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Abstract Early detection of hemorrhagic shock is re-

quired to facilitate prompt coordination of blood compo-

nent therapy delivery to the bedside and to expedite

performance of lifesaving interventions. Standard physical

findings and vital signs are difficult to measure during the

acute resuscitation stage, and these measures are often

inaccurate until patients deteriorate to a state of decom-

pensated shock. The aim of this study is to examine a

severely injured trauma patient population to determine

whether a noninvasive SpHb monitor can predict the need

for urgent blood transfusion (universal donor or additional

urgent blood transfusion) during the first 12 h of trauma

patient resuscitation. We hypothesize that trends in con-

tinuous SpHb, combined with easily derived patient-

specific factors, can identify the immediate need for

transfusion in trauma patients. Subjects were enrolled if

directly admitted to the trauma center, [17 years of age,

and with a shock index (heart rate/systolic blood pressure)

[0.62. Upon admission, a Masimo Radical-7 co-oximeter

sensor (Masimo Corporation, Irvine, CA) was applied,

providing measurement of continuous non-invasive he-

moglobin (SpHb) levels. Blood was drawn and hemoglobin

concentration analyzed and conventional pulse oximetry

photopletysmograph signals were continuously recorded.

Demographic information and both prehospital and ad-

mission vital signs were collected. The primary outcome

was transfusion of at least one unit of packed red blood

cells within 24 h of admission. Eight regression models

(C1–C8) were evaluated for the prediction of blood use by

comparing area under receiver operating curve (AUROC)

at different time intervals after admission. 711 subjects had

continuous vital signs waveforms available, to include

heart rate (HR), SpHb and SpO2 trends. When SpHb was

monitored for 15 min, SpHb did not increase AUROC for

prediction of transfusion. The highest ROC was recorded

for model C8 (age, sex, prehospital shock index, admission

HR, SpHb and SpO2) for the prediction of blood products

within the first 3 h of admission. When data from 15 min

of continuous monitoring were analyzed, significant im-

provement in AUROC occurred as more variables were

added to the model; however, the addition of SpHb to any

of the models did not improve AUROC significantly for

prediction of blood use within the first 3 h of admission in

comparison to analysis of conventional oximetry features.

The results demonstrate that SpHb monitoring, accompa-

nied by continuous vital signs data and adjusted for age and

sex, has good accuracy for the prediction of need for
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transfusion; however, as an independent variable, SpHb did

not enhance predictive models in comparison to use of

features extracted from conventional pulse oximetry. Nor

was shock index better than conventional oximetry at dis-

criminating hemorrhaging and prediction of casualties re-

ceiving blood. In this population of trauma patients,

noninvasive SpHb monitoring, including both trends and

absolute values, did not enhance the ability to predict the

need for blood transfusion.

Keywords Blood transfusion � Detection of hemorrhage �
Hemorrhagic shock � Noninvasive monitoring � Continuous

hemoglobin � Transfusion prediction

1 Introduction

Traumatic injuries remain a major public health threat, ac-

counting for over 10 % of the world’s deaths each year [1, 2].

In particular, hemorrhage after injury is the most common

cause of preventable death in both military and civilian set-

tings [3–5]. Standard physical findings and vital signs are

difficult to measure during the initial stage of trauma resus-

citation, and these measures are often inaccurate until pa-

tients deteriorate to a state of decompensated shock [6, 7].

Invasive laboratory testing to detect hemorrhagic shock is

time consuming and often delays treatment. Point-of-care

testing measurements can vary considerably between dif-

ferent laboratory devices in their ability to detect bleeding

and shocked patients, and finger stick capillary blood sam-

ples are susceptible to wide differences compared to tradi-

tional laboratory measurements [8]. A non-invasive device

that estimates trends in hemoglobin may offer considerable

clinical benefit detecting the need for blood transfusion

during hemorrhage in a trauma patient.

Early detection of hemorrhagic shock is required to fa-

cilitate prompt delivery of blood component therapy to the

bedside and performance of other life-saving interventions.

However, the ability to rapidly and reliably identify patients

with life-threatening hemorrhage before or during initial

presentation to a trauma center remains an unrealized goal in

trauma patient resuscitation. Continuous monitoring of non-

invasive percutaneous hemoglobin (SpHb) may allow de-

tection of hemoglobin loss due to bleeding and may allow

early detection of hemorrhaging patients without the prob-

lems inherent with single time-point laboratory testing. A

recent meta-analysis by Kim et al., analyzed four studies in

the emergency department and four studies in the intensive

care unit [9]. SpHb was associated with wide variability

when compared to laboratory Hb as a gold standard [9]. In

the intensive care unit, SpHb has been shown to vary be-

tween -3.63 and 2.62 g/dL when compared to laboratory

Hb, and in the emergency department setting, SpHb has

been shown to vary between -3.78 and 2.99 g/dL [9]. Re-

cent findings from a study of 46 pediatric patients under-

going major surgery with potential major blood loss also

demonstrated wide variability (level of agreement, -2.0 to

3.2 g/dL) in SpHb measurements when compared to

laboratory Hb [10]. However use of trends in continuous

non-invasive SpHb may facilitate timely patient assessment

and prompt timely interventions for stabilization during

initial trauma patient resuscitation enabling discrimination

of bleeding from non-bleeding patients.

The aim of this study is to examine an unstable injured

trauma patient population to determine whether trends in a

noninvasive SpHb monitor can predict the need for urgent

blood transfusion (universal donor or additional urgent

blood transfusion) up to 12 h after initial trauma patient

resuscitation. We hypothesize that trends in continuous

SpHb, combined with easily derived patient-specific fac-

tors such as age and sex, have high sensitivity and speci-

ficity for identifying the need for blood transfusions in

unstable trauma patients.

2 Methods

2.1 Institutional review board

The study was approved by expedited review of Institu-

tional Review Boards (IRB) from both the University of

Maryland and the US Air Force without a requirement to

obtain patient consent.

2.2 Enrollment site and criteria

Our Level 1 trauma center admits more than 5000 trauma

patients annually directly from the scene of injury, of

whom 5–8 % will require transfusion, and 2–3 % massive

transfusion (MT), defined in this analysis as [4 units of

packed red blood cells in \4 h. Most transfusions occur

within the first few hours of admission and often occur as

un-crossmatched universal donor group O blood on an

emergency basis [11–13]. This study is a planned subgroup

study analysis as part of the ongoing resuscitation vital

signs data-gathering project titled Oximetry and Non-In-

vasive Predictors Of Intervention Need after Trauma

(ONPOINT) at the University of Maryland School of

Medicine, R Adams Cowley Shock Trauma Center.

ONPOINT is a project designed to examine a wide range of

non-invasive sensors, clinical indicators, and other

physiological parameters to identify trauma patients in

need of lifesaving interventions, including the need for an

urgent blood transfusion.

All ‘‘Priority 1’’ subjects are enrolled who meet the

following enrollment criteria: direct admission (by
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helicopter or ambulance) to the Trauma Resuscitation Unit

(TRU) at the R Adams Cowley Shock Trauma Center,

C18 years of age, and an abnormal Shock Index (heart

rate/systolic blood pressure) [0.62 [10]. A Priority 1 des-

ignation, as defined by Emergency Medical Services

(EMS) personnel, includes a critically ill or injured person

requiring immediate attention or unstable patients with life-

threatening injury or illness. Routine vital signs reported to

the trauma center by EMS providers are used to calculate

the Shock Index. Subjects admitted in active cardiac arrest

or dying within 15 min of trauma center arrival are not

enrolled.

2.3 SpHb sensors

Upon admission to the trauma resuscitation unit (TRU), a

Masimo Radical-7TM (Rev F) co-oximeter sensor (Masimo

Corporation, Irvine, CA) is applied. The pulse-oximetry

values, including HR, percutaneous oxygen saturation

(SpO2), and the photopletysmograph waveform (PPG) are

collected using Bedmaster� Software (Excel Medical

Electronics, Jupiter, FL, USA). The shielded SpHb sensor

is routinely applied to the ring finger of the left hand since

the blood pressure cuff is typically placed on the right arm;

the SpO2 pulse-oximeter sensor (GE Marquette, Mil-

waukie, WI) is usually placed on the index finger of the left

hand. One hour of SpHb data is collected after admission to

the TRU.

Research staff continuously enrolls subjects 24 h a day,

7 days a week. The primary outcome of interest is the

administration of at least one unit of packed red blood cells

(PRBCs) within the first 12 h after admission to the TRU.

2.4 Vital signs features selection and model

development

Candidate variables are initially selected based on clinical

intuition and previous work indicating predictive value for

MT [14, 15]. Multiple variables are considered and stan-

dard forward and backward stepwise selection is used to

construct simple models that avoid over-fitting. Models are

evaluated in terms of area under the receiver operating

curves (AUROC). To address the trade-off between fitting

the data and the complexity of the model, cross-validation

is used to evaluate each model’s performance in both

training and testing datasets. Models with \10 % differ-

ence in training and testing AUROC are considered as

balanced models in goodness-of-fit and complexity. The

AUROCs in training sets demonstrate how well the models

fit the data, and the AUROCs in testing sets demonstrate

how well the models will perform on unseen data.

Forty features of HR, and SpO2 and the photopletys-

mographic waveforms are defined as previously described

[14]. These features included a measure of the pulsatile

versus non-pulsatile photopletysmographic signal. Features

to quantify the changing pattern of SpHb during the initial

15 min monitoring, SpHb values were smoothed within a

sequence of exclusive same size time windows, i.e., 1, 2,

and 3 min. Features including percent (%) increase or de-

crease, 1-min maximum value, minimum value and slope

variance (interquartile range) were extracted using the

continuously accrued SpHb data.

2.5 Statistical analysis

Data analysis is focused on the comparison of transfusion

predictions based on age- and sex-adjusted groups of vital

signs pulse oximetry features and slope and trend features

of SpHb. For each data group, we use multivariate logistic

regression models adjusted for age and sex for prediction

of transfusion. Forward and backward feature selection was

enforced to build simple models with important variables.

Variables included in the models are: age, sex, pre-hospital

HR, SpHb, SpO2, photopletymograph (PPG) waveforms,

admission HR, and pre-hospital Shock Index.

To investigate the role of SpHb in blood product use

prediction, eight classification models are selected as

shown in Table 1. The base models (C1 and C5) only differ

in using pre-hospital HR or pre-hospital SI. Models C2 and

C3 compare SpHb with two commonly monitored vital

signs, SpO2 and HR; while model C4 intends to show their

combined performance. SpHb is incorporated into the

models to study the contribution of this variable for im-

proving prediction results. The best combination of vital

signs features included in each prediction model is selected

by a stepwise feature selection procedure. AUROCs cal-

culated from the prediction models are compared using

DeLong’s method [16]. AUROCs are calculated for vital

signs alone, and a combination of vital signs, demographic,

and SpHb features. Sensitivity and specificity are calcu-

lated from the optimal threshold determined by the Youden

index [12]. The prediction models are cross-validated by

Table 1 Variables included in regression models to calculate sensi-

tivity and specificity for the need for administration of at least one

unit of packed red blood cells (pRBCs)

Model Variables

C1 Age ? sex ? prehospital heart rate

C2 C1 ? SpHb

C3 C1 ? SpO2 ? admission heart rate

C4 C1 ? SpHb ? SpO2 ? admission heart rate

C5 Age ? sex ? prehospital shock index

C6 C5 ? SpHb

C7 C5 ? SpO2 ? admission heart rate

C8 C 5 ? SpHb ? SpO2 ? admission heart rate
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training and testing using leave-one-out methodology [17].

SAS Version 9.2 (SAS Institute, Cary, North Carolina) was

used for statistical calculations and a P value of\0.05 was

considered statistically significant.

3 Results

The ONPOINT project enrolled 1,191 subjects. SpHb data

was available in 711 (59.7 %) of these patients. Demo-

graphic data are presented in Table 2. Among these 711

patients, 5.2 % received a blood transfusion within 12 h.

All patients were transported directly to the scene, and

none received blood products before admission to the TRU.

Eight regression models (C1–C8) are evaluated to de-

termine the sensitivity and specificity for the prediction of

blood use by using data collected for different time inter-

vals after admission to the trauma center (15, 30, and

60 min). When SpHb is monitored for 15 min, SpHb does

not contribute additional sensitivity and specificity for the

prediction of blood transfusion. The highest AUROC is

from model C8 (age, sex, prehospital SI, admission HR,

SpHb and SpO2) for the prediction of blood transfusion

within the first 3 h of admission.

Fifteen minutes of SpHb monitoring does not add sig-

nificant predictive power to the other variables (model C7

AUROC: 0.86 vs. model C8 AUROC: 0.87; P = 0.63)

(Fig. 1). When data from 30 min of continuous monitoring

are analyzed (Fig. 2), significant improvement in AUROC

occurs as more variables are added to the model; however,

the addition of SpHb to the model does not improve

AUROC significantly for prediction of blood use within the

first 3 h of admission (model C3 AUROC 0.87 vs. model

C4 AUROC 0.93, P = 0.06; model C7 AUROC 0.84 vs.

model C8 AUROC 0.89, P = 0.12). AUROC is highest in

all models for predicting blood transfusion within the 1–3 h

time interval and progressively lower for the remaining

time intervals up to 12 h.

Sixty-minute data demonstrate significant improvement

in AUROC (Fig. 3). The highest AUROC is calculated in

model C4 for the 1–3 h time interval (AUROC = 0.93;

P = 0.007). Addition of SpHb statistically significantly

improves AUROC for the 1–3 min time interval for models

C1–C4 (P B 0.05 for all models); however, when Shock

Index is used instead of HR, the addition of SpHb data does

not improve AUROC (model C7 AUROC 0.89 vs. model

C8 AUROC 0.89, P = 0.74).

Training and testing is performed using leave-one-out

methodology to validate all models [13]. For models using

60 min of data collection, balanced models are observed

with the majority of percent differences between training

and testing less than 15 %.

Model balance improves when pre-hospital SI (models

C5–C8) rather than pre-hospital HR (models C1–C4) is

used.

4 Discussion

Considering both the high mortality associated with

hemorrhagic shock and the risks of blood component

therapy, rapid, robust, and reliable methods for assessing

the likely need for transfusion and other life-saving inter-

ventions are urgently needed to ensure optimal patient

outcomes. The results from this study demonstrate that a

model using age, sex pre-hospital HR, and continuous vital

signs data obtained from features of PPG (model C3), has

good accuracy for predicting the need for transfusion.

When SpHb is added to the model, sensitivity and speci-

ficity do not significantly improve AUROC beyond data

derived from age, sex, and conventional continuous vital

signs. The best current pre-hospital data for predicting

blood transfusion includes pre-hospital Shock Index, SaO2,

and HR [15]. When Shock Index is included (model C5),

there is no improvement in transfusion prediction, even

when monitoring is extended for a period of at least

60 min. Shock Index is accurate for correctly classifying

those patients in need of a blood transfusion within the first

3 h of admission to a trauma center; however, Shock Index

adds no benefit as a predictor of early transfusion in

comparison to PPG derived features. Shock Index gives

only intermittent rather than continuous updates, and re-

quires the addition of a non-invasive blood pressure

monitor to calculate [18].

Several studies have examined variables that are as-

sociated with moderate to good sensitivity and specificity

Table 2 Demographic characteristics (N = 711)

Mean age in years (SD) 38.6 (16.7)

Sex (N, %)

Male 495 (69.6)

Female 216 (30.4)

Injury type (N, %)

Blunt 615 (86.5)

Penetrating 86 (12.1)

Other 10 (1.41)

Mechanism of injury (N, %)

Motor-vehicle-associated 373 (52.5)

Falls 157 (22.1)

Interpersonal violence 133 (18.7)

Other 48 (6.7)

Disposition at discharge (N, %)

Home or institutional care 700 (98.5)

Died in hospital 11 (1.5)
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for the prediction of MT [14, 15]. In these studies,

calculations of a score to predict MT are based not only

on physiological but the addition of laboratory data

collected after a patient is admitted to the emergency

department or trauma center [14]. The most sensitive and

specific prediction scores rely on ultrasound [15] or

blood draws for laboratory tests [14]. Point of care

laboratory tests such as lactate and base excess have

been shown to be helpful for predicting transfusion re-

quirements [9, 18, 19], but these tests require an invasive

blood draw that may be difficult to obtain in austere or

pre-hospital settings. While algorithms have become

greatly simplified and validated for the prediction of MT,

efforts to formulate more accurate prediction algorithms

are still needed. These algorithms should incorporate

easily derived data so predictions may be made before or

shortly after the patient arrives at the medical treatment

facility. Even the recently developed Traumatic Bleeding

Severity Score (TBSS), while sensitive and specific

(AUROC of 0.98 with a score of 15 or greater), requires

an abdominal ultrasound exam, a pelvic radiograph, and

measurement of lactate [19].

Fig. 1 AUROCs for the various

models when monitoring was

continued for up to 15 min

(example: pRBC 1–3 refers to

administration of at least one

unit of packed red blood cells

within 1–3 h; 1–6 refers

administration of at least one

unit of packed red blood cells

within 1–6 h, etc.)

Fig. 2 AUROCs for the various

models when monitoring was

continued for up to 30 min

(example: pRBC 1–3 refers to

administration of at least one

unit of packed red blood cells

within 1–3 h; 1–6 refers

administration of at least one

unit of packed red blood cells

within 1–6 h, etc.)
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This is one of the initial and largest studies examining

the use of SpHb in trauma patients. It is likely that sub-

sequent iterations of SpHb technology will improve sub-

stantially. The next generation of SpHb sensors did not

become available until all patient data had been collected.

However, until further testing in this unstable patient

population is carried out we agree with Kim et al. [9] that

providers should remain cautious when using this tech-

nology for making clinical decisions about blood transfu-

sions [9] or in making judgments about whether a patient is

bleeding based on trends in SpHb. One solution for im-

proving the use of SpHb technology may be to employ the

methods used by Patino et al. [10] to use an the initial Hb

laboratory value so that subsequent SpHb values are offset

by the bias entered by the user.

This study has several limitations. First, only a limited

number of patients received a blood transfusion (5.2 %).

There are no standardized protocols to indicate when blood

transfusion is indicated in unstable trauma patients. Our

pulse oximetry features are significantly better that the

clinical judgment of our pre hospital providers, trauma

center physicians and nurses at predicting those patients that

are given blood [12]. While the transfusion of at least one

unit of blood is generally reserved for patients with obvious

signs of imminent exsanguination or hemorrhagic shock,

extremes of age, medications, and medical conditions can

confound clinical decisions regarding the need for emergent

blood transfusion. In previous work by our group, level of

experience during trauma resuscitation is an important factor

for timely selection of life-saving interventions such as

transfusion of uncrossmatched blood. The optimal

thresholds for sensitivity and specificity are undetermined,

and a major goal in predicting life-saving interventions is to

improve the accuracy for clinical decisions using the least

amount of data required. Finally, patient-specific factors,

such as temperature, vasoconstriction, and ambient light

may have altered the accuracy of SpHb measurements in our

patient population, although pre-processing with a signal

quality index was employed to avoid inclusion of poor

quality signals and by averaging and slope rends ample

consideration was given for allowing stabilization of the

SpHb reading.

Our work demonstrates that SpHb monitoring, accom-

panied by continuous vital signs data, and adjusted for age

and sex, has good accuracy for the prediction of need for

transfusion. SpHb alone does not enhance predictive

models in comparison to use of features extracted from

conventional pulse oximetry. Likewise, Shock Index did

not perform better than conventional oximetry at dis-

criminating the need for urgent blood transfusions in seri-

ously injured patients. Non-invasive monitors capable of

reproducing the high levels of sensitivity and specificity

associated with diagnostic tests such as lactate and ultra-

sound [14, 19] have unrealized potential to detect the need

for life saving interventions during the initial resuscitation

of trauma patients. In our trauma patient population, the

analysis of both SpHb trends and absolute SpHb values did

not contribute significantly to models relying on age, sex,

and continuous vital sign parameters does not appear to

justify the cost of first generation SpHb monitors at this

juncture for trauma patients. Nevertheless, with improved

monitoring technology, such as improved amplitude and

Fig. 3 AUROCs for the various

models when monitoring was

continued for up to 60 min

(example: pRBC 1–3 refers to

administration of at least one

unit of packed red blood cells

within 1–3 h; 1–6 refers

administration of at least one

unit of packed red blood cells

within 1–6 h, etc.)
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signal quality analytic features, SpHb remains a promising

modality. Additional trials are required to study the utility

of continuous vital signs data for the prediction of life

saving interventions in trauma patients.
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