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Abstract— Road traffic sensors provide us with rich multi-
variable datastreams about the current traffic conditions. Oc-
casionally, there are unusual traffic events (such as accidents,
jams, severe weather, etc) that disrupt the expected road traffic
conditions. Detecting the occurrence of such events in an
online and real-time manner is useful to drivers in planning
their routes and in the management of the transportation
infrastructure.

We propose a new method for detecting traffic events that
impact road traffic conditions by extending the Bayesian Robust
Principal Component Analysis (RPCA) approach. Our method
couples multiple traffic datastreams so that they share a certain
sparse structure. This sparse structure is used to localize
traffic events in space and time. The traffic datastreams are
measurements of different physical quantities (e.g. traffic flow,
road occupancy) by different nearby sensors. Our proposed
method process datastreams in an incremental way with little
computational cost, and hence it is suitable to detect events in
an online and real-time manner.

We experimentally analyze the detection performance of the
proposed coupled Bayesian RPCA using real data from loop
detectors on the Minnesota I-494. We find that our method
significantly improves the detection accuracy when compared
with the traditional PCA and non-coupled Bayesian RPCA.

I. INTRODUCTION

A large number of traffic sensors are continuously de-
ployed to collect data for traffic conditions. Federal and
State transportation agencies carry out various programs to
collect traffic data by means of inductive loop detectors,
video surveillance systems, and microwave radar sensors
[13]. Collected traffic data include traffic volume, velocity,
density, and vehicle classification. These data serve different
purposes of study, such as alerting drivers about congestion
and accidents, planning new road pavements to accommodate
predicted traffic loads, and so on.

There are two major ways to utilize the automatically and
continuously collected sensor data. First, we can detect traffic
events in their early stage, and send early warnings to drivers
for decision making. Second, we can use data assimilation
methods to fuse real observations into forecasting models
and produce more accurate near-future traffic condition pre-
diction, which also helps drivers avoid traffic jams and plan
better travel routes. In this study, we focus on the first way
of using traffic observations. On busy highways, accidents
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may cause severe and quick accumulation of vehicles. By
the time police receives report and issues a warning to other
drivers, it may have past several minutes or even longer. In
this situation, many drivers may miss the chance to take
an exit before entering the traffic jam trap. However, if
we utilize continuous, automated road sensor observations,
we can promptly detect the incidents and traffic jams in
their early stage of formation. Knowing the development of
incidents can help choose appropriate prediction models for
issuing early warnings, and drivers will have a chance to
adapt their routes.

Traffic observations demonstrate strong spatial and tem-
poral patterns, showing periodicity and strong correlation
between adjacent upstream and downstream observations.
These patterns may vary depending on time in a day, day
of the week, seasons, or locations. Figure 1 shows annual
average of traffic flow on each weekday with 15-minute
time resolution. The traffic flow data were collected from
42 sensors along the southbound I-494 in Minnesota by
the Minnesota Department of Transportation. The figure
shows different flow patterns in each weekday, e.g. Saturdays
and Sundays have smaller flow amount than weekdays. At
different hours within a day, traffic flow also shows different
patterns, while some of these patterns persist at the same time
but different days. Besides, we can observe that neighboring
sensors present similar patterns. Occasional incidents or
events of long duration show as abnormal events on the
background of normal traffic behaviors.

(a) Weekday patterns

Fig. 1. Annual average of traffic flows on each weekday with 15-minute
time resolution for 38 loop detector sensors on I-494 southbound and
eastbound.

To find “abnormal” events, one simple yet feasible way
is to define a normal range of traffic measurements based
on experience, and use thresholds to identify such special
events. However, threshold based methods are not reliable
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nor adaptive to changing environment. One approach, namely
robust PCA, which is widely used in detecting moving
objects in video frames shows promising connections to the
traffic event detection. In robust PCA, the normal background
data dwell in a low dimensional space, due to the strong
correlation among normal observations, and special events
dwell in a sparse subspace, which allows an observation set
to be decomposed into two subspaces, a normal background
subspace specified by a low rank matrix, and an anomaly
subspace specified by a sparse matrix [4], [5].

A traffic time series can be viewed as images, if we
collect the daily observations as one column of pixels in that
‘image’.matrix. Special events can be viewed as anomalies
in the image. Thus, a 1-dimensional datastream of traffic
observations can be converted into a matrix format.

In this paper, we convert 1-dimensional time series into
matrix format, and then decompose that matrix into super-
position of a low rank, a sparse, and a noise matrix. We
use a non-parametric Bayesian method, the Bayesian RPCA
to learn the latent low rank and sparse matrices from the
observation. Furthermore, we extend the Bayesian RPCA
to multiple multiple variables/timeseries/datastreams, which
may correspond to different observations that are aligned in
time and space or aligned in time but collected by nearby
sensors, by coupling them to share sparsity pattern/structure.
Our hypothesis is that by sharing a sparsity structure among
multiple datastreams affected by the same events, we may
be able to improve the detection accuracy of such events
from those observation datastreams. We call this approach
the coupled Bayesian RPCA. Using real traffic data, we
experimentally show that our proposed approach achieves
higher accuracy in detecting different types of traffic events.

The remainder of this paper is organized as follows. In
Section II, we briefly review related work on traffic event
detection, the robust PCA and its typical applications. In
Section III, we describe the characteristics of traffic data
streams, and show the spatial correlations between sensors.
We also demonstrate different types of events of interest.
In Section IV, we describe our proposed coupled Bayesian
Robust PCA method. The results of the experimental evalu-
ation of our method are given in Section V. Conclusions are
in Section VI.

II. RELATED WORK

Detecting interesting events is a pervasive problem in
many applications, such as video security surveillance, text
mining, etc. In road traffic event detection, a large volume of
work is based on surveillance video. In some methods, pixel-
level features are extracted to represent interesting spatial
and/or temporal events. Jiang et el. [10] proposed a dynamic
hierarchical clustering method to detect abnormalities in
traffic video. Morris and Trivedi [11] compute traffic flow
parameters from live video streams, and use speed profiles
to categorize traffic motion states.

Ihler et al. [9] use Markov Modulated Poisson Process-
es (MMPP) to discover events from timeseries of count
data. In a probabilistic model framework, they separate

the observed timeseries as a superposition of regular and
aperiodic processes. They use a non-homogeneous Poisson
process to model regular count data. For rare events, they
use a Markov chain to model the transition between states
including increased, decreased, or unchanged activities. The
MMPP method was applied to both highway traffic and
building pedestrian counts, and achieved significantly higher
accuracy compared to a baseline threshold model.

Principal components analysis (PCA) is well known tech-
nique used for dimensionality reduction. PCA also has
successful applications in finding outliers. It can be viewed
in probabilistic Bayesian way by using a latent variable [3],
[14]. With Bayesian PCA, the latent variable can be inferred
[3]. Conventional PCA’s major drawback is that it is not
robust to outliers. Recently, the robust PCA [4], [6], [7]
(a special case of matrix completion) has attracted much
attention in decomposing matrices into low rank and sparse
components matrices. This method finds wide applications in
many engineering and statistical modeling problems, where
order, dimensionality, or complexity of a model can be
evaluated by the rank of an appropriate matrix. The low
rank component can be viewed as a “denoised” version
of the data. The sparse component is useful in detecting
the outliers. For example, in detecting moving objects in a
sequence of movie frames with a varying background, one
can use the sparse components to locate the moving objects.
Becker et al [2] demonstrated an image processing system
that recover images from noisy observations using matrix
completion. Candès et al. [5], [6] provided examples of
matrix completion in recovering signals from the magnitude
of their Fourier transform, as well a collaborative filtering in
online recommendation systems.

Ding et al. [8] proposed a hierarchical Bayesian model to
decompose sequential video image matrix into a low rank
and a sparse component. They considered that an object
will have larger probability to show in the next frame, if
it shows up in the previous frame. Hence, they introduce
Markov dependence into the Bayesian RPCA. This is a good
example of utilizing known structure of sparsity to guide the
learning scheme. In our study, we experimentally find that the
Bayesian RPCA has good performance for detecting traffic
events. Then, we explore how to couple multiple traffic time
series by taking advantage of any shared sparsity structure.

This work provides a partial answer to Ihler’s question [9]
“how those covaring data streams should be combined, and
to what degree their parameters can be shared”.

III. TRAFFIC DATA AND EVENTS
A. Traffic data

A variety of sensors are used to measure traffic conditions,
such as inductive loop detectors, video surveillance cameras,
microwave radars and probe vehicles. Nowadays, using GPS-
enabled smartphones to collect traffic data is attracting an
increasing interest and attention. Typically measured quan-
tities include traffic density, vehicle speed, traffic flow, etc.
The traffic flow measures the number of vehicles that pass
a single point in a given time interval. Road occupancy is



the percentage of time that a detector is active due to the
presence of vehicles during a time period. It can be used as
a proxy for road density [13]. Given a distribution of vehicle
lengths, the average vehicle speed can be estimated from
traffic flow rate and road occupancy.

Traffic data have some important characteristics. First,
daily traffic data have strong temporal correlation, especially
when grouped by weekday.

Second, they contain sparse interesting features. Compared
to daily repeated traffic patterns, traffic events are rare and
hence manifested as random sparse features in the data that
persist for some time. As result, we get structured sparsity
with random occurrences in the traffic data streams.

Third, traffic data also present strong spatial correlation.
Downstream traffic measurements are influenced by nearby
upstream traffic measurements, and vice versa. For example,
Figure 2 illustrates strong linear correlation (≥ 0.76) between
upstream and downstream sensor measurements (except for
sensors at the flyovers) for the Minnesota real dataset de-
scribed in Section V.

Fourth, using different types of traffic measurements al-
lows to better capture the characteristics and effects of
traffic events. Hence, we seek to take advantage of the
shared sparsity structure between temporarily and spatially
correlated variables/measurements of different types.
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Fig. 2. Linear correlation between upstream and downstream sensor flow
rate measurements in a section of I-494.

B. Traffic events

Information about current traffic events is critical to drivers
when deciding their traveling routes and schedules, as well
as to the management of the transportation infrastructure.
Government transportation agencies publish timely traffic
incident information, such as the type (crash, roadwork, stall,
and hazard), location, start time, and duration of incidents.

Typically, an incident may cause the downstream traffic
flow and road density to reduce sharply, while the upstream
traffic may temporarily reduce flow and increase road den-
sity. However, sensor measurements indicate exceptions are
possible. For example, late night roadwork that is announced
way ahead of time may have limited impact on traffic
measurements, and hence it will not be detectable from the
sensor measurements alone.

Traffic events as announced have low spatial and temporal
resolution: we often only get the closest intersection where
an event happened, while there is latency between the occur-
rence and reported time of events. Therefore, it is desirable to

increase the accuracy of the location and happening time of
events from traffic data streams. Moreover, it is also desirable
to detect events before they are reported to the relevant
transportation agencies, so that it reduces the latencies and
improves asset utilization when managing incidents.

Furthermore, due to limited transportation management
assets, many events go unreported, despite the fact that
have noticeable impact on traffic and would be useful to
drivers. For example, traffic jams caused by non-accidents
can produce low flow rate and high road density; social
activities, such as football games and music concerts, can
produce unexpected high traffic volumes; reduced visibility
due to bad weather (heavy snow, fog, or rain) leads into
reduced road capacity, increased road density, and reduced
vehicle flow rates. In the experiments presented below, we
will study how the algorithm performs on finding events like
those as well as reported incidents.

Figure 3 illustrates four events of different types, which
are indicated by green shadow areas. Event 1 is a roadwork
event lasting 47 minutes and blocking a road lane 1. We
observe reduced flow rate and road occupancy during that
time, which normally has higher vehicle flux.

Event 2 corresponds to reduced traffic speed due to limited
visibility 2. Traffic remained free flow, but had decreased
flow rate and increased road occupancy. This suggests that
vehicles proceeded with caution at lower speeds while the
road density is still low.

Event 3 demonstrates an unusual traffic increase at a
Saturday night. Such a peak is generally not observed during
weekdays but only on some weekends. We hypothesize that
it was caused by social activities that usually happen in
weekends.

Event 4 presents a traffic jam in early morning on a week-
day. There was no incident reported from the transportation
agency. However, there was heavy snow and low visibility
during that time period, and taking into account that it was
during morning rush hour on a Wednesday, we infer the
severe weather caused that traffic jam.

IV. COUPLED BAYESIAN RPCA

In this section, we introduce the Bayesian RPCA, and de-
scribe our extension of this method to multiple coupled time
series. In our extension, the coupling of multiple timeseries
generated by dynamical systems is achieved through sharing
the same sparsity structure in the Bayesian RPCA. Bayesian
RPCA was formally presented in [8] and used in a shopping
mall human video surveillance system.

Given a measurement matrix Y , we would like to separate
Y into a superposition of three components Y = L+S+E,
where L is a low rank matrix for normal background, S is a
sparse matrix for rare events, and E is a noise matrix with
small magnitude elements for noise. The Bayesian RPCA
has strong connections to factor analysis, and has deep roots
in linear Gaussian systems [3], [12].

1Data source: MNDOT, 511MN.org
2Date source:weathersource.com
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(d) Event 4

Fig. 3. Examples of different event types and their impact on sensor
readings.

The low rank component is expressed through SVD as
L = DΛWT , where Λ ∈ Rr×r is a diagonal matrix
with main diagonal entries being the singular values of
L, D ∈ Rn×r and W ∈ Rd×r are constructed from the
left and right singular vectors of L. Since the rank r is
unknown, non-parametric Bayesian approach treats it as a
latent variable, and learns it from the data. In [8], the
singular values matrix is further decomposed into ZΛ, such

that L = D(ZΛ)WT , where D,W ∈ Rn×k are drawn
from multivariate Gaussian distributions, and Z,Λ ∈ Rk×k

are drawn from multivariate Beta-Bernoulli and Gaussian-
Gamma random processes. This method is similar to dictio-
nary learning, where k is the dictionary size and D is the
dictionary [8]. A Bernoulli distribution with hyperparameters
having a Beta prior distribution is used to learn the binary
values of the diagonal elements of Z, while a multivariate
normal distribution with hyperparameters having a Gamma
prior distribution is used to learn the real values of the
diagonal elements in Λ.

This Bayesian non-parametric approach provides a flexible
way to estimate the rank of the low-rank component matrix
without a preset parameter.

The sparse component S is decomposed as S = B ◦ X ,
where ◦ denotes the element-wise multiplication of two
matrices, sij = bijxij , where B is a binary matrix and X is
a real matrix. The binary elements of B are learned from a
Bernoulli process with hyperparameters having a Beta prior
distribution. The columns of X are learned from a multi-
variate Gaussian distribution with hyperparameters having a
Gamma prior distribution. In [8], Markov spatio-temporal
dependencies in the sparse component are considered, since
a moving object in one video frame is highly likely to show
up in the next frame at a nearby location. Therefore, a
Markov dependency along the columns (corresponding to
video frames) is enforced in the sparse component.

In our traffic problem, an event at one time in a given day
is unlikely to happen again the next day at the same time
and location. However, an event will persist for some time
after it happens. So when a traffic event happens, it is likely
that it will persist to the next time point.

When measuring many variables of a dynamical system,
it is natural to consider use multiple of them to learn the
system, instead of using only one variable. Besides, those
variables may share some internal structure, given that they
are generated from a single system/process. We extend the
Bayesian RPCA method by coupling the sparsity structure of
multiple variables that exhibit spatio-temporal dependencies.
For example, given two data matrices Y1 and Y2 observing
different physical quantities/variables at the same time and
location, we have

Y1 = D1(Z1Λ1)WT
1 + B ◦X1 + E1

Y2 = D2(Z2Λ2)WT
2 + B ◦X2 + E2,

where the binary matrix B, capturing sparsity, is shared by
both data matrices. Such sparsity structure sharing can be
further extended to measurements from multiple sensors in
a neighborhood, which may be affected by the same event in
time. Figure 4 shows the graphical model of our extension
to Bayesian RPCA, with coupled variables sharing the same
sparsity structure.

In traffic applications, loop detector sensors mea-
sure/collect multiple variables. The flow rate is a measure-
ment of number of vehicles passing through the sensor during
a unit time (e.g. 30 seconds). Usually, small flow rate means
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Fig. 4. Graphical model of Bayesian RPCA method with shared sparsity
structure between multiple measured variables. There is one “plate” for each
measured variable.

free flow on the road, while larger flow rate means higher
density on the road. However, when there is a traffic jam
and all vehicles move slowly or even stop, the flow rate is
low, but the traffic is not free flowing. An extra variable, the
road occupancy, is helpful in distinguishing between these
two event types. Also, adjacent sensors may record the same
events; hence they are very likely to share the same structure
of sparsity of B.

V. EVENTS DETECTION EXPERIMENTS

A. Experimental data.

We obtained a dataset of vehicle flow and road occupancy
measured by 38 inductive loop detectors on highway I-494
from the Minnesota Traffic Observatory (MTO) for the whole
year of 2011. The 38 loop detector sensors measure traffic
flow and occupancy on the southern and eastern bound I-
494. The dataset has time resolution of 30 seconds, which
accounts for 2880 data points per day for each measurement.
Inductive loop detectors fail sometimes, and the missing
measurements are flagged as -1 in the dataset (≈ 8.9% values
are missing).

In addition to the readings from the loop detectors on
the Minnesota I-494 highway, we also gather incident re-
ports, and weather information. We gather weather data
from weathersource.com. We gather incident reports for the
segment of road under study for 2011 from the RSS feeds
published by the Minnesota Department of Transportation
at 511MN.org. Each incident is described by start time,
duration, location, camera ID, event type, and blocking. For
example, on March 23, 2011 at 11:41AM in cross-section of
I-494 EB and Flying Cloud Drive, there was a crash, which
lasted for 45 minutes, and blocked at least one lane.

We preprocess the sensor readings by aggregating them
into 15-minute resolution, which is the typical time interval
used in vehicle volume counts [1]. Considering the strong
daily patterns presented by the sensor data, we construct a
matrix for each sensor/variable, whose columns contain the
daily aggregated data . Thus, an n × d matrix collects one
sensor’s data for d days with n points on each day. We also

remove an entire day, if the sensor was flagged as failed for
the whole day. However, for short duration failures, failure,
where some sensor readings during the day are flagged as
-1, we keep that day’s column.

To evaluate our method of detecting events, we need to
identity/annotate the sensor measurements with information
from ground-truth traffic events. To this end, we use the
gathered incident reports with some changes, as described
below. The gathered collection of incidents has some lim-
itations. First, the collection contains only incident events,
such as roadwork, crash, hazard, which often reduce the
traffic flow. As discussed earlier, other events (e.g. due to
social activities or severe weather) may also affect traffic
flow yet they are not included in that collection. Second,
the collection may contain incidents that do not impact the
sensor measurements and thus can not be detected from those
sensor measurements.

To mitigate these limitations, we proceed as follows. We
plot the whole year’s worth of flow, occupancy, their annual
average for each 15 minutes in a day, reported incidents,
and visibility, aligned by time. Then, we have asked three
people to individually review those plots and annotate time
segments that they consider fall into the following three types
of traffic events: (1) events that reduce flow rate or speed,
(2) free flow with unusual high traffic volume, and (3) sensor
failure. Annotations where the humans originally disagree,
the reviewers were asked to reach a consensus annotation.
During this annotation process, the reviewers had no access
to the output (detected events) of our proposed approach.

In what follows, we consider the measurements from loop
detectors with IDs 196 and 197 on the eastern-bound I-494,
which are within 0.5 miles of each other. The ground-truth
consists of 232 events total for the two sensors: 148 type-1
events, 83 type-2 events, and 1 type-3 event.

B. Coupling multiple variables

We compare three methods for detecting events from
measurements from a single sensor: our proposed method
using sparsity coupling for the traffic flow and road oc-
cupancy, the traditional PCA on traffic flow as a baseline,
and the Bayesian RPCA with traffic flow. We use the same
hyperparameters and priors for the proposed method and the
original Bayesian RPCA.

For the PCA method, we use a simple threshold on the
noise (residual not captured by the principal components).
We used 25 principal components (out of 96 possible com-
ponents) capturing over 95% of the energy of the data
(Euclidean norm). The noise threshold was set to 30 ve-
hicles/15 mins. We decided on this threshold value so that
PCA finds approximately the same number of false-positive
events as the other methods. With this setting, the number
of false-positives for PCA (flow/occupancy), Bayesian RPCA
(flow/occupancy), and our proposed coupled Bayesian RPCA
were 214/247, 281/290, and 257 respectively.

For each method, we count the number of detected events,
detected but unlabeled events,undetected but labeled events.
For this Minnesota dataset,



Method Variable Overall Type 1 Type 2

PCA flow 46.1% 49.3% 39.8%
PCA occupancy 54.3% 59.5% 45.8%
BRPCA flow 80.2% 73.6% 91.6%
BRPCA occupancy 81.5% 86.5% 73.5%
Coupled BRPCA flow& occupancy 83.2% 87.2% 77.1%

TABLE I
DETECTION ACCURACY COMPARISON OF THREE METHODS.

Table V-B shows the accuracy (ratio of the number of de-
tected events over ground-truth events) of the three methods.
Our proposed coupled Bayesian RPCA has the best accuracy
(83.2%) among the three, especially in finding events that
have negative impacts on traffic conditions (events of type
1). For type 2 events, Bayesian RPCA using only traffic flow
has better accuracy than coupling flow and occupancy in our
method. Note however that type 2 events (free flow with
unusual high traffic volume) have significantly less negative
impact than type 1 events,

Figure 5(a) shows an incident (green dots in the Events
axes) reported by 511MN.org, and is also annotated by the
human reviewers. The incident report indicates a car crash
near sensor 196 with lane blocking lasting 20 minutes. We
observe reduced vehicle flow and road occupancy. The event
is correctly detected by our method.

Figure 5(b) illustrate a case of reduced traffic speed due
to low visibility. During the time period indicated by the
red bars, there was heavy snow in the I-494 area with
visibility lower than 2 miles. The flow rate is significantly
lower than average, while the road occupancy is not reduced
accordingly, suggesting that drivers proceeded with caution
at low speed during that time. No incidents were reported by
511.org near that time/location, but the event is annotated by
the human reviewers. The event is correctly detected by our
method.

Figure 5(c) suggests a lane blocking event. There is
no reported incident at the time/location, but the event is
annotated by the human reviewers. The event is correctly
detected by our method.

Figure 5(d) illustrates a case where there is a reported
incident, which does not impact the traffic flow or occupancy.
No event in the nearby time/location is annotated by the
human reviewers, nor detected by our method.

C. Coupling measurements from neighboring sensors

In light of the strong correlation between measurements
from neighboring sensors we discussed in Section III, we
couple single variable measurements (either traffic flow or
road occupancy) from adjacent sensors. Table V-C shows
that each coupling road occupancy from neighboring sensors
gives the best accuracy overall and for type 1 events. Cou-
pling traffic flow gives the best accuracy for type 2 events.

The (coupled) Bayesian RPCA can be implemented for
online processing purpose. Its running time also promises
real-time processing. Above experiments were running on
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Fig. 5. Comparision of detected events and ground-truth events.

Spatial Coupling Overall Type 1 Type 2

flow 82.5% 74.7% 100%
occupancy 93.7% 94.9% 90.9%

TABLE II
DETECTION ACCURACY COMPARISON OF THREE METHODS.



a 64-bit machine with 8GB memory, Matlab 2011b envi-
ronment. Average running time using one variable for an
entire year is about 2 minutes, with 1000 burn-in and 1000
iterations in Gibbs sampling. Average running time for two
coupled variables takes 4 minutes. However, in real use, the
matrix size can be dramatically reduced by using only recent
a few months data, or only use the same weekday’s data for
a specific weekday.

VI. CONCLUSION

We consider the problem of detecting traffic events from
continuously collected measurements from road traffic con-
dition sensors. We focus on traffic slow down, unexpected
high traffic volume, and traffic jams events. Detecting such
traffic events can help drivers make early decisions to choose
travel routes, saving time and energy.

We propose an extension to Bayesian Robust PCA for
detecting events in road traffic datastreams. Our extension
couples multiple streams of sensor measurements so that
they share the sparsity pattern which is inherent in the
robust PCA approach. The sparsity sharing can be used
both in the temporal dimension (by using different variables
measured at the same location) and in the spatial dimension
(by using the same variable measured at nearby locations).
We experimentally demonstrate using a real dataset that
our proposed method significantly improves upon the event
detection accuracy of the traditional PCA and Bayesian
Robust PCA methods. Furthermore, the Bayesian nature of
the method facilitates a probabilistic interpretation of the
detected events, while removing the tension in deciding the
number of principal components to be used. Moreover, the
proposed method can process traffic datastreams incremen-
tally and thus can detect events in an online and real-time
fashion.

Though we focus on event detection, in the future we
plan to use the low-rank component of the traffic datastream
computed by the proposed method, to derive initial and
boundary conditions for macroscopic road traffic models. For
example, the low-rank component can be used to estimate
“normal” incoming/outgoing traffic flow at the entry/exit
ramps (by removing the effects of outliers/incidents), which
will allow to improve the accuracy of short-term forecasting
of road traffic conditions.
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