
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–11
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Performance Study on CUDA GPUs for Parallelizing the Local
Ensemble Transformed Kalman Filter Algorithm

Timothy Blattner∗and Shiming Yang

Department of Computer Science, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD
21250

SUMMARY

Modern graphics cards provide computational capabilities that exceed current CPUs. As one of the
computational intensive problems, numerical weather prediction (NWP) has the opportunity to benefit from
the massive number of threads and large memory throughput in the graphics architecture. In this paper,
we present the key steps to integrate the CUDA programming framework for one key component in NWP,
the data assimilation algorithm, which incorporates the observational data into the model to produce the best
initial condition in the next prediction. The data assimilation algorithm we studied in this paper exhibits good
localization and favors parallelism. To maximize the throughput of the graphics card, over a million CUDA
threads, global memory coalescing, and fast graphics shared memory are utilized. We also demonstrate the
differences in the advancement of GPU architectures from the GTX 200 series to Fermi. The experiments
are carried out separately on a GTX 260 (GTX 200 series) and a GTX 460 (Fermi) graphics card. Results
show an improvement of 72.1× speed-up running on the GTX 260 and 92.7× speed-up on the GTX 460.
The results provide attractive evidence for applying CUDA GPUs to high demanding scientific computation
realms. Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: GPU, data assimilation, performance study, throughput, speedup

1. INTRODUCTION

With the uprising of multi and many core architectures, large scale problems are embracing GPUs
for massive thread level parallelism. In the top 5 supercomputers, three of them deployed GPUs
to achieve massive computing power. Amongst them, the top 1 Tianhe-A supercomputer (Top500
Supercomputer list November 2010 [3]) equips 7168 NVIDIA Tesla M2050 GPUs, while the top 3
Nebulae supercomputer [3] installs 4640 NVidia Tesla C2050 GPUs. To meet the demands of the
platforms, increased memory, higher precision, and ECC have been integrated. To best utilize the
computing capabilities provided by the graphic processors, it is highly desired to study how to
optimize algorithms and programs on them. Nowadays, we consider the parallelism not only among
the nodes in a cluster, but also on the microprocessor level by virtue of multicores and manycores. To
fully utilize large clusters, a hybrid process and thread level parallel implementation can be adopted
to accelerate the large scale problems.

Programming on GPUs and on CPUs are quite different. Unlike CPUs, which are designed with
sophisticated branch prediction and enhanced instruction pipeline, GPUs are designed to handle
graphics rendering of large proportion of data parallelism [8]. However, GPUs should not be
confined to video game acceleration, but can be extended for general computation. In this paper,

∗Correspondence to: Department of Computer Science, University of Maryland, Baltimore County, 1000 Hilltop Circle,
Baltimore, MD 21250. Email: tblatt1@umbc.edu

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 T.BLATTNER AND S.YANG

we demonstrate one example of scientific computation, the local ensemble transform Kalman filter
(LETKF) algorithm for data assimilation. We study how well it fits into the GPU architecture,
by analyzing the algorithm and comparing the performance of two implementations on CPU and
CUDA, respectively.

Data assimilation is a technique widely used to incorporate observational data into a prediction
model, and provide initial conditions to the model for improved predictions [9, 10]. Data
assimilation algorithms and their implementations are computationally intensive tasks [11], and
require both accuracy and efficiency. The National Weather Service (NWS) in the U.S. performs
predictions every 6 hours with the 3D-VAR algorithm. The European Center of Medium-range
Weather Forecast (ECMWF) currently uses the world’s finest resolution at about 25 kilometers,
and offers a 10-day forecast using the 4D-VAR algorithm. Due to the scale of the forecasting
area and the number of state variables used to describe the atmosphere and weather, the weather
prediction problem is of terabyte scale and should be done in near real-time. For example, suppose
we wish to perform a very refined numerical weather prediction for the entire U.S. continent at 1
kilometer horizontal resolution, 100 vertical levels 10000 meters above the ground, and there are 200
interesting physical variables. The basic data required for merely the state vectors of this problem are
at least 3 terabytes. Nowadays, many data assimilation applications involve the ensemble Kalman
filter (EnKF) methods, which have shown to be effective and easier for implementation.

The LETKF is proposed by Hunt et.al.[4], which exhibits efficiency and favors parallelism
for data assimilation with very large non-linear dynamic systems in both sparse and dense data
regimes[4]. Some studies exert efforts on parallelizing the implementation of the LETKF on clusters
with MPI [5, 6]. This solution divides the main domain into sub-domains, and distributes each
small problem to many computational nodes. Each node has one CPU, and separate memory. With
a sufficient number of nodes, we can minimize the problem size on each node. Nevertheless, with
this design there are a number of other issues. Firstly, using more nodes means higher costs on
cluster building and power consumption. Secondly, the inter-node communication may increase
significantly when the problem is sliced into very small sizes. Therefore, to release this bottleneck,
many-core parallelism can be adopted for problems that are highly parallel and require only local
information.

In this paper, we do not seek to compare the performance of our implementation on the CPU
with that on the GPU, but will focus on the analysis of the data parallelism in a portion of the
LETKF algorithm and how it fits into the GPU architecture. This paper is organized as follows. In
section 2, we provide notations used throughout this paper, and analyze the LETKF algorithm for
its data parallelism. Next, we specify that memory hierarchy and massive thread spawning in the
GPU architecture are beneficial to the localization in the LETKF algorithm. In section 3, we report
the speedup result obtained from different GPU optimization strategies. Lastly, we discuss future
study.

2. PROBLEM ANALYSIS

The data assimilation method is used to recursively provide the initial conditions that the model
could best forecast in short-range system states [10]. The process of data assimilation is made up
of the following ingredients: the model, the observational data and the assimilation algorithm. In
our experiments, we adopt the shallow water equation [7] as a model problem. This model problem
simulates random water drops and the propagation of disturbances in a finite shallow water area.
Given a problem domain such as an n× n evenly spaced mesh grid, the state vector is of size n2.
Assuming that every grid point has observational data, the observational vector is also of size n2.
However, in real cases, the dimension of observation is far less than the state vector. In our model
problem, the model state xt represents the height of a wave at time t. The wave is then projected
into the observational space as yt, where measurement instruments can be used to observe some
interesting physical quantities, such as the wave height. Within the system state and observations
there contain model and measurement error, which are represented by random variables. Therefore,
we need to know about the probability distribution of the state variables. Due to the difficulty of

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE STUDY ON CUDA GPUS FOR PARALLELIZING THE LETKF ALGORITHM 3

tracking the distribution [4], the ensemble Kalman filter based methods use an ensemble of states
x(i) to simulate the distribution, where i = 1, 2, . . . , k, and k is the number of ensemble members.
Let H denote the projection operator, and yo denote the measured wave height. The shallow water
model, denoted asM forwards the system states from time step t to the next time step t+ 1 by

xi
t+1 =M(xi

t) + εt+1. (1)

In the LETKF algorithm, we use the background ensemble x
b(i)
t as one of the inputs, which is

forwarded by the model from the last time step’s analysis ensemble. We also use the observation
ensemble y

b(i)
t , which is a projection of the background ensemble. Let k be the number of members

in the ensemble. Also, the means and covariances of the members are required in calculating the
new analysis ensemble [4]. The following equations illustrate the loop of finding x

a(i)
t .

x
b(i)
t = M(x

a(i)
t−1) (2)

y
b(i)
t = H(xb(i)

t) (3)

x
a(i)
t = analysis withx

b(i)
t ,y

b(i)
t ,yo. (4)

2.1. Local Ensemble Transform Kalman Filter

According to Amdahl’s law, the speedup is limited by the serial portion in the algorithm. By
analyzing the LETKF algorithm, we understand that this algorithm has a large number of arithmetic
operations that can be executed simultaneously, which promises a high level of data parallelism.
Table I lists the two major parts of the LETKF algorithm, the global analysis and the local analysis.
It is worth noting that the two analysis parts are comprised of basic matrix operations. Within the
local analysis each grid point is updated with operations on matrices and vectors formed from its
neighbor points. This is very similar to video game image rendering, which computes each image
pixel with information associated with surrounding points. At each time step, all grid points can be
updated simultaneously and independently, with small matrices and vectors attached to them. In a
single core CPU, all grid points are sequentially updated. However, the many-core GPU is able to
accomplish this task in parallel, as illustrated by Figure 1.

Table I. Global and local analysis of LETKF, and its operation types

Operation Type Formula Size
average matrix col-wise x̄b ← {Xb(i)} n2 × 1← n2 × k

golbal matrix minus vector col-wise Xb ← {Xb(i) − x̄b} n2 × k ← n2 × k
analysis linear mapping Ȳb(i) ← {H(Xb(i))} m2 × k ← n2 × k

average matrix col-wise ȳb ← {Yb(i)} m2 × 1← m2 × k
matrix minus vector col-wise Ȳb ← {Yb(i) − ȳb} m2 × k ← m2 × k

matrix product / inverse C← {(Yb)TR−1} k × `← k × `× `× `
matrix product / inverse P̃a ← [(k − 1)I/ρ+ CYb]−1 k × k ← k × k

local square root of matrix Wa ← [(k − 1)P̃a]1/2 k × k ← k × k
analysis mat-mat / mat-vec product w̄a ← P̃aC(yo − ȳb) k × 1← k × k × k × 1

matrix plus vector col-wise {wa(i)} ← {Wa(i) + w̄a} k × k ← k × k
mat-vec product, sum xa(i) ← Xbwa(i) + x̄b k × k ← k × k

In the global analysis, the vectors of background states x
b(i)
[g] are used to calculate its mean x̄[g]

and covariance matrix Xb
[g]. Next, the projection operator is applied to x

b(i)
[g] , which generates the

ensemble of observation y
b(i)
[g] . Also, its mean ȳ[g] and covariance matrix Yb

[g] are calculated. All
the calculations above are done component wise. Therefore, when implementing in both the MPI

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 T.BLATTNER AND S.YANG

Figure 1. Multiple threads update each point.

· · ·
· · ·
· · ·

Figure 2. Memory access pattern for a block.

programming model and the CUDA model, there is no data dependency from the point’s neighbors.
Excellent data parallelism can be achieved in this phase.

On the other hand, the local analysis updates each grid point in the state space, requiring its
corresponding m points from its neighbor. As shown in Figure 2, when one thread updates a grid
point state from time t to t+ 1, it only requires its neighbors’ states at time t. In this schema, each
thread can update a grid point without conflicting to other threads. To prepare the local analysis,
related rows and columns in x̄[g] and X[g] are collected to form local x̄ and X. The same procedure is
also applied to the global ȳ[g] and Yb

[g] to form local ȳ and Yb. Moreover, for the global observation
yo
[g], which is of size `[g] × `[g]. Generally, the `[g] is far less than the length of domain size n. We

also assume that the observational covariance matrix Rg of size `2[g] × `
2
[g] is known and fixed. Using

this information, corresponding local yo and R are formed.
After the local analysis, we obtain the value Xa

[g] for each grid point amongst all members in the
ensemble at time t. We can use the shallow water model to forward these analysis state vectors at
time t to the next time step t+ 1, and get the new background state vector Xb

[g]. This complete one
cycle of model simulation with data assimilation.

2.2. GPU Architectures

Better understanding of the GPU architecture enables efficient conversation between the software
and the hardware. The first language that helps maximize performance is the communication with
the memory pipeline. In graphics memory there are five levels of memory, each of which exist
entirely on the graphics card. First is the large global memory, which can reach up to 6GB with
current graphics cards. Accessing this memory is expensive and should be avoided when possible;
however, with the Fermi architecture, two new levels of cache can be used to optimize problems
that only fit into global memory. Global memory is accessible from every thread in a kernel. Next is
the fast shared memory. This memory can be the key to maximizing performance on the GPU. The
downside is the limited amount of shared memory available, which is 16KB or 48KB per block.
This memory is only accessible from threads within a block. The third level is local memory. This
memory resides on global memory, but can be as fast as shared memory with the usage of registers.
Local memory is local to each thread. The fourth level of memory is registers. Registers are a
limited resource accessed by each thread. Reducing the number of registers used by each thread can
increase the data parallelism of a kernel. The final level of memory is the cache, which only exists
in the Fermi architecture. Fermi’s cache is out of the scope of this study.

The second language that is significant to the conversation is the GPU scheduler. The main
compute units in the graphics architecture are the streaming multiprocessors. When submitting
kernels to the GPU, each kernel generates a user-defined number of blocks, which are scheduled
onto each streaming multiprocessor. Next, each multiprocessor uses its multiple cores to process
the user-defined number of threads per block. These threads are then split up into warps, which
are scheduled and processed in parallel by the cores of the streaming multiprocessor. Each warp

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE STUDY ON CUDA GPUS FOR PARALLELIZING THE LETKF ALGORITHM 5

contains 32 threads. Finding the correct combination of threads per block tb and number of blocks
can optimize the performance of an application and optimize the memory throughput of the kernel.
To optimize the throughput, GPUs have the ability to schedule multiple blocks simultaneously on
a single streaming multiprocessor. A block that is scheduled on a streaming multiprocessor is said
to be an active block. The number of active blocks that a multiprocessor can handle is defined by
the capabilities of the device, for instance a Fermi or GTX 200 series card can have up to 8 active
blocks for a single multiprocessor. The number of active blocks that can be run on a multiprocessor is
bound to the resources used by each block. Therefore, the number of registers per thread rt, number
of threads per block tb, and the amount of shared memory per block sb determines the number of
active blocks. To help determine the number of active blocks, there are a series of equations that
are helpful. These equations can determine the most effective domain size to maximize the memory
throughput.

Finding the proper number of threads per block and total number of blocks helps determine the
correct decomposition for a GPU kernel. Fully occupying the GPU helps to determine these values
and enables maximum utilization of the graphics hardware. Occupancy O is the ratio of the number
of active warps per multiprocessor nw and the number of warps allowed per multiprocessor wp. nw
is found by multiplying the number of active blocks per multiprocessor nb by the number of warps
per block wb. The number of active blocks per multiprocessor is found based on the limitations of
the hardware. The limitations are expressed in the following equation: min(

wp

wb
,
rp
rb
,
sp
sb
, bp), where

rp is the number of registers per multiprocessor, rb is the number of registers per block, sp is the
amount of shared memory per multiprocessor, sb is the amount of shared memory per block, and
bp is the maximum number of active blocks per multiprocessor. Example values of these variables
can be found in Table II. NVIDIA has provided an excel spreadsheet to help determine the effect
various decompositions have with the graphics card [2].

Table II. Notations for number of active blocks calculation

Factors Notation Example Values
Fermi GTX 200 Series

Maximum Active blocks per multiprocessor bp 8 8
Threads per warp tw 32 32

Warps per multiprocessor wp 48 24
Registers per multiprocessor rp 32768 16384

Shared Memory (bytes) per multiprocessor sp 49152 16384
Warps per block wb user defined user defined

Registers per block rb user defined user defined
Shared memory per block sb user defined user defined

Threads per block tb user defined user defined
Registers per thread rt user defined user defined

Number of Active Blocks per multiprocessor nb Equation 5 Equation 5
Number of warps per block wb

tb
tw

tb
tw

nb = min(
wp

wb
,
rp
rb
,
sp
sb
, bp) (5)

nw = nb × wb (6)
O = nw/wp (7)

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 T.BLATTNER AND S.YANG

3. OPTIMIZATION TECHNIQUES

3.1. Decomposition

Graphics memory and system memory are located in two separate places, and at many times the
graphics memory is much smaller (1GB) than the large system memory (8GB). Therefore large
problems that can fit into system memory, may not necessary fit onto the graphics memory. LETKF
tends to have very large domain sizes, for example, a typical domain size can take up to 8 GB of
memory (or more). To solve this problem, we decompose the domain so that MPI distributes data
that fits nicely on the graphics memory.

Our experiments thus far have decomposed these problems into small chunks of size Nx ×Ny

for example, Nx = 256 and Ny = 256. Each element looks at ` neighbors within some radius, in
our experiment the radius is set to one, which gives us nine total neighbors per element. There
are Nens ensembles of these chunks, which in our experiment is set to thirty-two. We have
determined that these chunks fit within our graphics global memory, which has up to 868 MB.
We then decompose these smaller chunks into thread-level blocks. In order to compute matrix
C, we take two matrices, Y b and R and multiply them. In the global GPU domain, Y b = Nens×
Ny ×Nx, C = Nens × `×Ny ×Nx, R = `× `. Every thread is responsible for the local matrix in
Y b, consisting of ` elements. This local matrix is multiplied to R, resulting in ` points for C, see
Figure 3. In order to represent this structure in CUDA, we add three dimensions for decomposition.
The first level is responsible for the number of threads per block, which is Nx. The second level
is responsible for Ny blocks, which forms a single dimension for the total number of blocks. The
third level is the Nens, which represents the second dimension of a block. Therefore, in our case
we are forming a two dimensional number of blocks, and a one dimensional number of threads
per block. The total number of threads spawned on the GPU is equal to Nx ×Ny ×Nens, which
is equal to 256× 256× 32 = 2, 097, 152 threads. By doing this kind of decomposition every thread
is only responsible for a single element in matrix C, which simplifies our graphics kernels, which
helps reduce the number of resources used per block. All strategies used above apply to calculating
matrix P .

3.2. Memory Access Pattern

In the graphics architecture it is very important to reduce memory transactions by coalescing
memory access. If memory is not coalesced, then extra memory transactions are done, causing a
significant reduction in the performance. In this section we focus on the pattern used in the first
dimension, which is the threads within a block.

To calculate C, matrices R and the transpose of Y b are stored into global memory and are shared
amongst all threads in the kernel. From our decomposition, every thread in a block has a single
element such that each successive thread accesses the successive element of the previous thread, see
Figure 2. By following this access pattern, we avoid threads from accessing the same element, while
at the same time aligning memory accesses [1]. Figure 3 illustrates the update for each element in
matrix C. Once C is calculated, special consideration must be done to ensure efficient storage, such
that memory is coalesced, and data is prepared for the next phase. In order to satisfy these conditions
we analyze the next phase in the assimilation algorithm. Matrix P is calculated by multiplying C
and the transpose of Y b. After calculating each element of C, we store the matrix such that every
thread has close proximity to its ` neighboring points. By storing C in this fashion, we ensure that
threads accessing elements in parallel do not conflict and are within the same block of memory, see
Figure 4.

To calculate P , we multiply matrices Y b and C. This calculation has similar attributes to that of
calculating matrix C; therefore, we use a similar decomposition technique as seen above. Figure 4
describes the calculations done for P . Ultimately, each thread in C calculates Nens points in P . A
single point in P is calculated by multiplying submatrix C by its corresponding local matrix in Y b,
shown in Figure 4. As before, we store matrix P to optimize for the next step in the algorithm. More
study needs to be done regarding the storage of matrix P .

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE STUDY ON CUDA GPUS FOR PARALLELIZING THE LETKF ALGORITHM 7

•Nx = 192

•Ny = 192

•k = 27

•` = 9

Nx

Ny

(Y b)T

←
k →

t0 t1 tNx−1

· · · · · ·

R−1

`

C

Nx

`

k ensemble

.
←

Ny
→

Figure 3. Memory access pattern for a block.

C

Nx

`

k ensemble

.←
Ny
→

Nx

Ny
Y b

←
k →

P

Nx

k

Ny

.←
k →

Figure 4. Memory access pattern for a block.

3.3. Shared Memory

Shared memory is the most significant performance improvement available for the GPU. It is similar
to optimizing for CPU L1 cache. The main problem with GPU shared memory is its size. On the
Fermi architecture, GPUs only have 48KB, and on the GTX 200 series only 16KB. So in order to
maximize the performance, blocks must be decomposed such that their memory can be placed into
the fast shared memory. Shared memory is local to a single block of threads on the GPU.

In the previous section, decomposition was discussed and enables us to make use of fast shared
memory. To calculate matrix C, we store the entire matrix R and sub domain of Y b for a single
block into shared memory, which is represented by the region shadowed with checkerboard pattern
in Figure 3. We then do the matrix multiplication on these matrices in shared memory and store the
final values into matrix C in global memory.

For calculating a single block of elements of matrix P , we store one ensemble of matrix Y b for
a block from global memory to shared memory. In order to calculate the entire matrix P we iterate
over the ensembles loading each ensemble into shared memory for each block. A single iteration

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 T.BLATTNER AND S.YANG

of this process is represented from the region shadowed with checkerboard patten in Figure 4. One
aspect that is important to note when accessing shared memory is to avoid accessing words in the
same bank of memory. If threads within a half warp are accessed in this fashion, then a bank conflict
occurs, which increases the number of memory transactions. Because of the way we stored matrix
C from our decomposition, we prevent causing bank conflicts.

3.4. Memory Throughput

Memory throughput is maximized based on the number of active blocks because as blocks are
being executed on a multiprocessor, other blocks can fetch memory as needed, which hides the slow
memory transactions. Equations 5 to 7 help us determine the number of active blocks a kernel is
using [2]. The main factors to these equations are tb, sb, and rt. These values can be tweaked to
optimize the number of active blocks. See Figure 5.

Figure 5. Occupancy calculations for Fermi using tb, sb, rt [2]

In order to maximize the memory throughput of our kernels, we want to maximize the number
of active blocks being executed. Using the above calculations and a domain size of 256× 256,
calculating matrix P uses 6 out of the possible 8 active blocks on the Fermi and 3 out of 8 on the
GTX 200 series. This reduction in active blocks is mainly caused by the limited number of registers
on each multiprocessor. Each thread is using 20 registers, which equates to 5120 registers. On the
GTX 200 series, there are a total of 16384 registers per multiprocessor, which indicates that at most
there can be 3 active blocks. So in order to ensure more blocks are active, we must either reduce the
domain size or reduce the number of registers. We decided to reduce the domain size by a factor of
32. It is important that the value be divisible by 32 to maximize active blocks based on warps. From
this knowledge our next closest domain size is 192. Analysis shows a domain size of 192× 192 has
an increase in the number of active blocks from 3 to 4 for GTX 200 series cards and an increase
from 6 to 8 on Fermi, which maximizes the number of active blocks on the architecture. The cause
of the dramatic difference in active blocks between the two architectures is the large increase in
the resources available for the Fermi architecture. Fermi has twice as many registers, three times as

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE STUDY ON CUDA GPUS FOR PARALLELIZING THE LETKF ALGORITHM 9

much shared memory, and a higher volume of warps per multiprocessor. These factors enable our
algorithm to have a good fit at the lower domain size. In order to increase the GTX 200 series card’s
active block usage, we would have to decrease the number of registers used.

4. PERFORMANCE STUDY

For our performance study we have two different setups. The first is a q6600 @ 2.4GHz with 4
GB DDR2 memory and a GTX 260 graphics card (GTX 200 series) running CUDA version 2.1.
The second is using a q6600 @ 2.4 GHz with 4 GB DDR2 memory and a GTX 460 graphics
card (Fermi) running CUDA version 2.1. See Table III for details on the hardware specifications
between the two graphics cards. Although the q6600 has four cores, the purpose of this performance
study is to analyze the different optimization techniques used for graphics cards. Therefore, our
implementation is only utilizing a single core to simplify comparison and to use the CPU time as a
constant factor between the GPU implementations and changes in domain size.

Table III. Graphics hardware comparison

Graphics card EVGA GTX 260 EVGA GTX 460
Architecture GTX 200 series Fermi
Cuda cores 216 336

Streaming Multiprocessors 27 7
Cores per Multiprocessor 8 48

Core clock speed 1242 MHz 1526 MHz
Global memory size 868 MB 1024 MB

Effective Memory Clock 1998MHz 3800MHz
Shared memory per multiprocessor 16 KB 48 KB

Registers per multiprocessor 16384 32768
Warps per multiprocessor 16384 49152

Table IV. Speedup analysis

Kernel Calculation GTX260 vs CPU GTX460 vs CPU GTX460 vs GTX260
Naive Matrix C 15.0x 93.7x 6.2x

Shared Memory Matrix C 54.0x 77.5x 1.4x
Decomposition-256 Matrix C 225.8x 181.1x 0.8x

Matrix P 52.5x 80.8x 1.5x
Combine C and P 70.7x 99.6x 1.4x

Decomposition-192 Matrix C 211.4x 175.4x 0.8x
Matrix P 54.3x 75.1x 1.4x

Combine C and P 72.1x 92.7x 1.3x

Naive – 256× 256 domain, no optimizations, direct CPU to GPU port. This kernel was
programmed prior to the release of Fermi. Interesting to see the performance of the GTX 460 on this
problem. Without any optimizations and no shared memory, the GTX 460 was able to achieve over
90× performance and 6.2× faster than the GTX 260. The main causes of this significant speed-up
is due to the large amount of resources, higher clock speeds, and the creation of a cache hierarchy
provided by the Fermi architecture.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 T.BLATTNER AND S.YANG

Shared Memory – 256× 256 domain, added shared memory for matrices Y b and R. Another
interesting factor is the decrease in performance from the naive implementation for the Fermi
card. This may be directly caused by the new cache hierarchy that Fermi has integrated into their
architecture. The cause of the slow speeds for this kernel is caused by the extra memory transactions
done when loading values into shared memory. Each thread must load k ensembles from global
memory into shared memory. The number of calculations done in shared memory is not significant
enough to offset the number of transactions completed.

Decomposition-256 – 256× 256 domain, shared memory for matrices Y b and R for matrix C
calculation, and shared memory for matrix Y b. Added level of decomposition by increasing the
dimensionality of the number of blocks by the number of ensembles in the problem. This effectively
reduced the number of resources used, but drastically increased the number of threads generated.
The large increase in performance by this kernel is directly related to the decrease in the number of
memory transactions done per thread. The transactions are decreased because of the reduction in the
number of registers and the elimination of the loop over the k ensembles. In the naive and shared
memory kernels, each thread used 25 and 22 registers respectively, which decreased the number of
active blocks. With the added level of decomposition, this value was reduced to only 8 registers per
thread, increasing the memory throughput of the kernel. On the down-side it spawned more blocks
for execution, which the GTX 200 series handled nicely, but was not handled as nicely on the Fermi
because of the reduced number of multiprocessors.

Decomposition-192 – 192× 192 domain, same as Decomposition-256, except with a reduced
domain size from 256× 256 to 192× 192. The purpose of this design is to analyze the affect
of increasing the number of active blocks per multiprocessor. This decrease in threads enables a
greater number of active blocks, which should increase the memory throughput. The problem size
between the two kernels is decreased by a factor of 1.7. The GPU time between the two kernels
indicate a faster compute time of 1.7×. Therefore, although the performance is better between the
two kernels, the main cause is due to the reduction in problem size. Although Decomposition-192
maximizes the number of active blocks per multiprocessor, the effect is not significant to increase
the performance between the two kernels. This is because the occupancy between the two kernels is
the same; therefore, we are already utilizing the GPU to its maximum potential.

5. SUMMARY

From our analysis we can determine that there are significant opportunities for the Local Ensemble
Transform Kalman Filter on GPUs. By taking advantage of the locality of the algorithm, we can
spawn a massive number of threads on the GPU, and do the local analysis simultaneously for each
grid point on the problem domain. This promises that GPUs accelerate the LETKF algorithm, and
can be used on problems that exhibit high time efficiency demands.

In our optimization techniques, we found that by increasing the decomposition we reduced
resources used per thread and simplified the code. On the GTX260 we saw a speedup of 4× between
the Shared Memory and Decomposition-256 kernels, and a speedup of 15× between the Naive
and Decomposition-256. See Table IV. The decomposition of the problem significantly impacts the
performance that is seen from the graphics card.

From the performance study, we can conclude that higher speed up can be achieved by using
shared memory and simplifying the kernel with decomposition. One interesting aspect is it is
not always necessary to increase the number of active blocks for a kernel, as seen in comparing
Decomposition-192 with Decomposition-256. On a particular graphics architecture, a program
reaches its highest potential when the graphics card’s occupancy is full. Another aspect found from
our study is a dramatic increase in performance for the Naive kernel between the two architectures.
The two architectures have a similar number of cores, so the cause of this performance difference is
due to the introduction of cache in the Fermi architecture. More study is needed to be done on this
aspect.

Regarding future work, one of the most interesting aspects of the results found is the difference in
the architectures. Fermi needs further investigation on strategies to optimize code. More specifically,

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE STUDY ON CUDA GPUS FOR PARALLELIZING THE LETKF ALGORITHM 11

Fermi’s increase in resources enables a greater number of threads per block, and encourages it,
particularly with the increase of the number of cores per multiprocessor (from 8 to 48). Also the
cache and dual warp scheduler on the Fermi needs to be properly analyzed. This study does not
exhaust the optimizations that can be done to further increase performance.

In the current study, the CPU code utilizes only a single thread. It would be an interesting problem
to fairly compare the LETKF algorithm between the CPU and GPU by implementing a CPU multi-
threaded version of the code.

In this study the main contribution is to analyze the strategies for utilizing data parallelism on
the GPU. We focus on calculating matrices C and P because the matrix operations of the local
analysis are similar to image rendering. These matrices feature ensembles, which increase the
computational complexity and data requirements. By calculating and analyzing the matrices on
the GPU we demonstrated optimal strategies to enhance data throughput on the GPU. The final
portions of the algorithm may also benefit from the GPU, so in the future we intend on finishing the
remainder of the local analysis and compare the results with the CPU implementation.

Acknowledgment: The authors would like to thank Dr. Kostas Kalpakis for his guidance
with the data assimilation algorithm.

REFERENCES

1. Nvdia Corp. online document 2010. NVIDIA CUDA C Programming Best Practices Guide version 2.3.
http://developer.nvidia.com.

2. Nvdia Corp. online document. 2010. NVIDIA CUDA Occupancy Calculator.
http://developer.download.nvidia.com/compute/cuda/3 2 prod/sdk/docs.

3. TOP500 Supercomputer Site. 2011. TOP500 Supercomputer Novermeber 2010 List.
http://www.top500.org/lists/2010/11.

4. Brain R. Hunt and et. al. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform
Kalman filter. Phy. D, pp112-126.

5. Takemasa Miyoshi and Shozo Yamane. 2007. Local Ensemble Transform Kalman Filtering with an AGCM at a
T159/L48 Resolution. American Meteorological Society, Vol. 135, pp3841-3861.

6. Istvan Szunyogh and Eric J. Kostelich and G. Gyarmati and et.al. 2005. Assessing a Local Ensemble Kalman Filter:
Perfect Model Experiments with the National Centers for Environmental Prediction Global Model. Tellus, Vol. 57A,
pp528-545.

7. Cleve Moler. 2000. Experiments with Matlab, Chap 16, Shallow Water Equations. http://www.mathworks.com.
8. Victor Lee and Changkyu Kim and Jatin Chhugani and Michael Deisher and et. al. 2010. Debunking the 100X GPU

vs. CPU myth: an evaluation of throughput computing on CPU and GPU. ACM SIGARCH Computer Architecture
News, Vol. 38, pp451-460.

9. Geir Evensen. 2007. Data Assimilation: The ensemble Kalman filter. Springer.
10. Eugenia Kalnay. 2003. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press.
11. Ming Xue and Kelvin K. Droegemeier and Daniel Weber. 2007. Petascale Computing: Algorithms and

Applications,. chapter Numerical Prediction of High-Impact Local Weather: A Driver for Petascale Computing.
Chapman & Hall/CRC.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

	1 Introduction
	2 Problem Analysis
	2.1 Local Ensemble Transform Kalman Filter
	2.2 GPU Architectures

	3 Optimization Techniques
	3.1 Decomposition
	3.2 Memory Access Pattern
	3.3 Shared Memory
	3.4 Memory Throughput

	4 Performance Study
	5 Summary

