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In 2011, the IBM Watson supercomputer beat two 
human contestants in the television game show Jeopardy!, 
empowered by 2880 processor cores (Ferrucci et al, 

2013). After its impressive performance in the game show, 
IBM’s Watson has made conquering health care its next 
objective, and generated new ideas on how big data could 
be harnessed with supercomputing power to improve our 
health. The big data analysis phenomenon is about vast 
volumes of data analysed at high velocity from a variety of 
sources (Laney, 2001). The goal of such big data analysis 
efforts applied to health care is to use all the available 
health information and recognize patterns linked to out-
comes to develop actionable therapeutic interventions. 

In the clinical realm, the volume of real-time physio-
logical patient data has proliferated with each advance in 
computer hardware and medical sensor technology. High 
fidelity data are streamed into physiological monitors for 
care planning, clinical decision support, quality improve-
ment and remote patient monitoring. Processing and 
extracting useful and actionable knowledge from these 
patient data also requires consideration of the techniques 
used to store, manage and analyse such massive data. 
Those techniques are far beyond the capacity of tradi-
tional database and spreadsheet-based analysis in linking 
common medical knowledge and relationships to features 
of physiological signals and other patient data. Military 
medicine considers these techniques as the future way to 
develop combat casualty autonomous resuscitation 
(Palmer, 2010; DuBose et al, 2011) and enhance real-
time field decision-making (Provost and Fawcett, 2013). 

For the purposes of demonstrating a practical and ben-
eficial application, this article describes how, in the next 
2 years, we may achieve the unrealized goal of accurately 
predicting trauma patient outcomes related to actionable 
emergency therapeutic interventions and later be able to 
translate this into autonomous resuscitation. 

Data sources and application  
of the raw big data
Clinicians are currently facing the challenge of collecting 
and organizing unprecedented quantities of data from 
multiple sources. These heterogeneous data are available 
and need to be collected with different formats and tem-
poral resolutions, including ordinal or categorical data 
(e.g. Glasgow Coma Scale, age, sex), continuous (trend 

and waveforms), radiological images, text (medical 
records, clinical notes), and other important data (e.g. 
adverse events, treatments, response). In the current hos-
pital environment, these data are in a loosely organized 
decentralized network. System failure or manual data 
entry errors can result in missing values, causing diffi-
culty in application of decision-support algorithms, or 
such failures can lose data associated with rare events. 

One approach to manage vital signs waveforms and 
trend data, used at a level 1 trauma centre that admits 
more than 8000 severely injured patients annually, is to 
design a triple redundant data collection server for high 
fault tolerance to maximize these data collection rates to 
nearly 100%. For an illustration, Figure 1 shows the data 
streams of various stages in the care of a trauma patient 
including pre-hospital and in-hospital data and the com-
ponents that manage and analyse the big data.

‘Big data’ approaches to trauma outcome 
prediction and autonomous resuscitation
Massive clinical digital data routinely collected by high throughput biomedical devices provide opportunities and 
challenges for optimal use. This article discusses how such data are used in learning prediction models at level 
1 trauma centres to support decision making in trauma patients. 
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Figure 1. Data streams collected while a patient is transported, treated and discharged 
from a trauma centre. Critical components of the big data approach in handling those 
massive data are shown and the expected outputs.
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During pre-hospital transportation to trauma centres, 
vital signs signals including electrocardiogram, pulse oxi-
metry photopletysmograph, end tidal carbon dioxide 
(ETCO2) (collected at 240 Hz), non-invasive blood pres-
sure (intermittent in mmHg), heart rate and respiratory 
rate (per minute collected at 0.5 Hz) are collected as the 
basic signals and contain more than 400 000 data points 
per minute (Mackenzie et al, 2008). Different groups of 
features (e.g. demographics, photopletysmograph 
derived, laboratory measurements, percutaneous haemo-
globin oximetry) are identified based on thresholds with 
clinical meanings, such as pressure x time ‘dose’ of shock 
index (systolic blood pressure/heart rate) >0.9, percutane-
ous oxygen saturation (SpO2) <90%, heart rate >120/
minute (Kahraman et al, 2010; Stein et al, 2011). Low 
resolution temporal data, such as mechanism of injury, 
field Glasgow Coma Scale, and patient demographics 
such as age and sex, can also be collected through com-
munication networks. 

After trauma patient admission, more than 50 types of 
automated and continuous vital signs are routinely col-
lected in critically injured patients, from the resuscitation 
unit, operating theatre or intensive care unit. Like haem-
orrhage, traumatic brain injury is another common cause 
of emergency admission after injury (Eastridge et al, 
2009; Stein et al, 2011). In trauma centres, vital signs 
collected in such traumatic brain injury patients include 
continuous intra-arterial blood pressure, pulse oximetry, 
ETCO2, intracranial pressure and other waveforms. For a 

typical traumatic brain injury patient staying 7 days in a 
trauma centre, five 240 Hz waveforms are monitored and 
up to 700 million data points (equivalent to 8-gigabyte 
disk size, if data are stored in 12-bit format) would be 
collected.

Haemorrhage after injury has been shown in multiple 
studies to be the most common cause of preventable 
death in civilian trauma care and on the battlefield 
(Holcomb, 2010; Perkins and Beekley, 2012). Rapid 
identification of patients with life-threatening bleeding in 
the field and during pre-hospital care would allow pre-
hospital providers to more accurately triage such patients 
to trauma centres. Patient outcomes can be obtained by a 
standardized query of the Trauma Registry database, 
including survival, hospital length of stay, therapeutic 
interventions, injuries, and laboratory and radiological 
results. As an example of application of big data analysis, 
these pre-hospital data can be used to discriminate bleed-
ing from non-bleeding patients and predict resuscitation 
outcomes, such as those injured patients who are haem-
orrhaging enough to need blood transfusion. Such pre-
hospital data could focus triage and the clinical manage-
ment toward earlier haemorrhage control interventions, 
critical to saving life in exsanguinating patients.

The sequence of signal processing needed to process 
such pre-hospital vital signs signals in trauma patients 
includes artifact removal by applying a signal quality 
index. Features of these signals are identified and linked 
to outcomes; next, statistics are applied to see how well 

Figure 2. An interface with display visualizing a 1-hour-long electrocardiography (ECG) and photoplethysmography (PPG) waveform 
measured from a pulse oximeter with corresponding each-minute heart rate and peripheral capillary oxygen saturation (SpO2). The red and 
black dots indicate the peaks and valleys of the waveform. The PPG and SpO2 feature selections can be entered along the right upper and 
lower boxes. 
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the features predict outcomes of interest. Features of the 
signals can include amplitude of a waveform, mean, 
median, inter-quartile range, or duration of signal values 
above or below physiological thresholds of normality. 
Twenty or 30 such features can be assessed for each single 
epoch of a waveform. Figure 2 shows a typical view of the 
signals and the schema to select features of each signal 
during 30 seconds of photopletysmograph waveforms 
from the pulse oximeter. Three groups of features are 
illustrated from the one pulse oximeter signal: amplitude, 
SpO2 features, and heart rate features obtained from this 
one device. 

Massive learning and model verification
It is unwise to equate data with knowledge. From huge 
volumes of these data, interpretable and actionable 
knowledge needs to be derived. Traditionally, an experi-
enced clinician distills concise and practical rules from 
years of observation and clinical practice. With massive 
data, such a process can be accelerated with automated 
machine learning algorithms. However, the algorithms 
may generate counterintuitive models, misled by outliers, 
missing values, biased data and incorrect assumptions 
(Bishop, 2006; Lantz, 2013). Therefore, a priori knowl-
edge and cross-validation are essential in building and 
selecting models. 

Expert clinical knowledge is of paramount importance 
in successful learning from data. In creating interpretable 
models to associate quantities derived from vital signs 
features with trauma outcomes (such as transfusion, mor-
tality, length of stay, actionable therapeutic interven-
tions), clinical guidelines are used to eliminate clinically 
irrelevant variables, to exclude unnecessary high-order 
functional relations and so simplify the process of learn-
ing from large datasets. 

Learning from massive data and selecting models 
requires intensive calculation. In clinical datasets, the 
number of observations per subject could be an order of 
magnitude greater than the number of subjects that are 
observed. In identifying salient variables that best explain 
the outcomes, extra feature groups are gradually included 
and comparisons are made among models to evaluate the 
importance and contribution of each group of features. 
Advanced machine learning methods, such as stepwise 
logistic regression, lasso and random forest, can be used 
to select features from high-dimensional datasets (Bishop, 
2006; Bühlmann and van de Geer, 2011). 

To test and validate these models’ performance on new 
data and to prevent potential over-fitting, a scheme of 
10-fold cross-validation repeated 10 times is commonly 
adopted. A balanced training and testing model predic-
tion is used to see if the model can be generalized to new 
previously unused data. For example, with multiple com-
binations of five outcomes, six feature groups, 10-fold 
repeated 10 time cross-validation, about 1500–3000 
multiples of model calculations and 100–300 model 
comparisons and statistical tests are required. To handle 

such data-intensive and computation-intensive learning 
tasks, the steps of data preparation, feature selection, 
model comparison and output are automated to allow 
efficient near ‘real-time’ (within seconds) implementa-
tion of predictions. 

Ideal pre-hospital trauma patient outcome 
prediction tool
An ideal tool for pre-hospital data collection would be 
fully automated and require no user input to produce 
updated predictions in near real-time, and would include 
a simple display format (e.g. red, yellow, green warnings). 
This approach would allow any pre-hospital care pro-
vider to simultaneously provide patient care and hands-
free documentation, while automatically enabling early 
detection of the need for intervention. For example, a 
useful prediction in trauma patients would be the need 
for emergency blood transfusion, as this is an indication 
of injury sufficient to cause life-threatening haemorrhage. 
The benefits of such early identification of haemorrhage 
are associated with increased survival. 

Big data analysis application to pulse 
oximetry signal processing
Can features of the pulse oximeter signal including heart 
rate, photopletysmograph waveform and SpO2 rapidly 
identify patients with life-threatening haemorrhage in the 
field and during pre-hospital care? To discriminate bleed-
ing from non-bleeding trauma patients, clinicians want 
answers to questions such as can automated analysis of 
these pulse oximeter signal features from a single moni-
toring device do this as well or better than conventional 
indices based on manual collection of vital signs or as well 
or better than clinical experts. 

To predict transfusion in a recent study, 12 amplitude-
related photopletysmograph features, nine features of the 
percutaneous SpO2 signal and nine features from the 
pulse oximeter heart rate signal were selected by stepwise 
logistic regression (Mackenzie et al, 2014). Area under 
the receiver operating characteristic (AUROC) curves 
were used to compare transfusion outcomes in 556 
enrolled patients, 37 of whom received blood within 
24 hours. The first 15 minutes of vital signs signals, 
including pre-hospital heart rate plus continuous pulse 
oximeter signal analysis, predicted 1–3-hour transfusion 
better than all 24-hour-interval blood use predictions 
using conventional transfusion predictions (Sasser et al, 
2009; Fitzgerald et al, 2011; Vandromme et al, 2011; 
Mitra et al, 2014) based on heart rate or shock index 
alone (AUROC 0.84, P<0.03) or heart rate and photo-
pletysmograph features predicting 1–12-hour and 1–24-
hour blood use (P<0.04). Predictions of transfusion 
<6 hours based on the first 15 minutes of data were no 
different using 30–60 minutes of data collection. Shock 
index plus photopletysmograph and SpO2 signal analysis 
(AUROC 0.82) predicted 1–3-hour transfusion no dif-
ferently than pulse oximeter signals alone. 
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To see if these analyses may be enhanced with the use 
of continuous non-invasive pulse oximetry-derived hae-
moglobin, percutaneous haemoglobin oximetry was col-
lected in trauma patients to test this hypothesis. The 
addition of continuous percutaneous haemoglobin oxi-
metry data to the conventional pulse oximetry features 
selected in the study above did not improve predictions 
of early blood transfusion. Percutaneous haemoglobin 
oximetry is insufficiently accurate (percutaneous haemo-
globin oximetry bias 0.6 ± standard deviation 1.96 g/dl) 
in detecting changes in total haemoglobin in unstable 
trauma patients during resuscitation (Mackenzie et al, 
2012; Moore et al, 2013). 

Prospective survey of clinicians’ clinical 
judgment
To further evaluate transfusion prediction models, a sur-
vey of clinicians’ judgment was conducted and compared 
with the models. Pre-hospital providers, nurses and con-
sultant-level physicians predicted emergency transfusion 
with AUROC 0.74–0.84 and transfusion within 
1–3 hours with AUROC 0.67–0.77, essentially no differ-
ent from the automated predictions derived from the 
pulse oximeter waveform analyses. Pulse oximeter fea-
tures collected in the first 15 minutes of this trauma 
patient resuscitation cohort therefore predicted transfu-
sion in the critical first hours of care using only a single 
device with no user input as well as experts. 

Implications of such automated predictions 
of transfusion
Given the 20–30-minute en route transit time for typi-
cal helicopter emergency medical services, these find-
ings suggest that pre-hospital collection of data is suffi-
cient to warn the trauma receiving team and, through 
them, the blood bank of impending need for increased 
blood product support with >95% accuracy. Such ana-
lytic software could have important potential as a plat-
form for field-ready algorithms that could be integrated 
into patient monitoring systems. This work also sup-
ports the efforts of trauma care and emergency medical 
services to forward-deploy instrumentation capable of 
automated collection of continuous, high-quality vital 
signs data for future generations of clinical decision-
support instrumentation. 

If point-of-care testing and other vital signs devices 
are added, potentially simple software upgrades to exist-
ing pre-hospital monitors could ‘call’ ahead to warn the 
blood bank, advise the trauma team and operating team 
to start preparations for these interventions, activate 
blood product processing to reduce the coagulopathy of 
trauma, and coordinate other logistics for trauma 
patient reception and resuscitation. For transfusion pre-
diction, parsimonious models (five to nine features 
derived from photopletysmograph waveform) can be 
built into small single-board computers or smartphone 
apps for use in time-critical and mobile situations. Since 

the models provide probabilistic scores to measure the 
possibility of transfusion, numeric scores with three 
simple colours (red, yellow, and green) can be displayed 
so that the predictions can be easily grasped by busy 
pre-hospital clinicians. This way, new knowledge can be 
decoded from continuous photopletysmograph data for 
practical use.

Autonomous resuscitation
Autonomous resuscitation of trauma patients takes all 
these ideas to create a futuristic vision of decision support 
(Darrah, 2013) driving closed-loop controllers of vital 
functions (Palmer, 2010). In the battlefield 5 years hence, 
remote operations will occur in hostile areas far from 
access to fixed medical facilities. Casualties may be trans-
ported back for definitive medical care by unmanned or 
remotely piloted vehicles with duplex audio video com-
munications but no co-located medical care providers. A 
highly mobile unmanned system mounted under a 
stretcher will provide fully autonomous patient resuscita-
tion and stabilization through closed-loop control of 
fluid infusion, pain medications, ventilation/oxygena-
tion, chest decompression, and tourniquets for haemor-
rhage control, or could function in an advisory status for 
control through telecommunication links with a remote-
ly situated medical care provider. The end objective 
would be to autonomously respond to changes in casu-
alty physiology during up to 6 hours transport in a pilot-
less vehicle. 

Total prototype device weight is approximately 7 kg 
(including fluids), and the device attaches underneath a 
standard NATO litter. Remote interfacing with the sys-
tem can be done via any linked computer platform or 
smartphone while on the battlefield. The predictive algo-
rithm models are run on a quad redundant computer 
system built into the device. Before boarding an autono-
mous transport vehicle, the predictions of transfusion 
would ensure that patients with ongoing haemorrhage 
were triaged by co-located clinicians to immediate inter-
ventions to control bleeding. While this may seem very 
advanced, autonomous, pilotless, full-sized helicopters 
have been flying for more than 8 years. The predictions 
obtained from photopletysmograph and other vital signs 
signal processing can drive the autonomous resuscitation 
with remote oversight through audio-video and interface 
with other patient status devices through telecommuni-
cation links.

How do these advances impact the future 
of health care in general?
Clinicians are embracing more non-invasive sensor tech-
nology and techniques to better understand patients’ 
physiological changes and trends, and it is anticipated 
that the volume of health-care data will increase exponen-
tially. New architectures for massive data processing, such 
as MapReduce, Hadoop (O’Reilly Radar Team, 2011), 
and secure storage for data sharing in multicentre studies 
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can run on current affordable mainstream multi-core 
desktops and workstations. Large volumes of data alone 
do not make big data (Needham, 2013); rather, the distil-
lation of knowledge from enormous and heterogeneous 
data sources makes these analyses ‘big’. 

With the increasing power of high throughput data 
stream processing capability and massive data storage 
capacity, clinical observations of high integrity can be 
efficiently analysed for their association with patient out-
comes of interest. These, in turn, can be summarized into 
parsimonious models to enable rapid validation. In the 
very near future (12–24 months) new big data-derived 
linkages will prompt timely updates of patient triage, 
diagnostic assistance and clinical guidelines to allow more 
precise and personalized treatment to improve clinical 
outcome for patients. 

Conclusions
Hospital and emergency health interventions provide 
rich sources of high fidelity data. Storing, managing and 
analysing those data are beyond traditional means and 
call for ‘big data’ approaches. With ambient non-invasive 
data sensors and reliable collecting techniques, fractional 
information from heterogeneous data sources can be 
assembled in a real-time fashion and applied for specific 
studies and can incorporate expert knowledge of clini-
cians into the automated learning process. The analysis of 
photopletysmograph waveform-derived features is an 
illustration of the benefits of using massive data for early 
trauma outcome prediction and autonomous resuscita-
tion. Future study and analysis will establish a framework 
to accommodate large-scale data and allow these to be 
analysed in real-time for insight and practical use, a 
framework that calls for multidisciplinary collaboration 
of clinicians, statisticians, technologists and computer 
scientists. BJHM
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KEY POINTS
n	 Massive	clinic	data	analysis	is	an	interdisciplinary	enterprise.

n	 The	pulse	oximeter	is	a	source	of	continuous	electronic	data	suitable	for	automated	
real-time	prediction	analysis.

n	 Interpretable	and	actionable	models	can	be	learned	from	large-scale	clinic	data.

n	 Through	machine	learning,	we	can	convert	‘big’	data	into	‘small’	models	running	
on	‘small’	devices.	
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