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ABSTRACT: 

BACKGROUND: Respiratory rate (RR) is important in many patient care settings; however, 

direct observation of RR is cumbersome and often inaccurate, and electrocardiogram-derived RR 

(RRECG) is unreliable. We asked how data derived from the first 15 minutes of RR recording 

after trauma center admission using a novel acoustic sensor (RRa) would compare to RRECG and 

to end-tidal carbon dioxide-based RR (RRCO2) from intubated patients, the “gold standard” in 

predicting life-saving interventions in unstable trauma patients. 

METHODS: In a convenience sample subset of trauma patients admitted to our Level 1 trauma 

center, enrolled in the ONPOINT study, and monitored with RRECG, some of whom also had 

RRCO2 data, we collected RRa using an adhesive sensor with an integrated acoustic transducer 

(Masimo RRa™). Using Bland-Altman analysis of area under the receiver operating 

characteristic (AUROC) curves, we compared the first 15 minutes of continuous RRa and RRECG 

to RRCO2 and assessed the performance of these three parameters compared to the Revised 

Trauma Score (RTS) in predicting blood transfusion 3, 6, and 12 hours after admission. 

RESULTS: Of the 1200 patients enrolled in ONPOINT from December 2011 to May 2013, 

1191 had RRECG data recorded in the first 15 minutes, 358 had acoustic monitoring, and 14 of the 

latter also had RRCO2. The three groups did not differ demographically or in mechanism of 

injury. RRa showed less bias (0.8 vs. 6.9) and better agreement than RRECG when compared to 

RRCO2. At RRCO2 10-29 breaths per minute, RRa was more likely to be the same as RRCO2 and 

assign the same RTS. In predicting transfusion, features derived from RRa and RRECG gave 

AUROCs 0.59-0.66 but with true positive rate 0.70-0.89.  
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CONCLUSION: RRa monitoring is a non-invasive option to glean valid RR data to assist 

clinical decision making and could contribute to prediction models in non-intubated unstable 

trauma patients. 

 

1. INTRODUCTION 

Respiratory rate (RR) is one of the fundamental clinical vital signs. It is one of three key 

physiologic pre-hospital triage criteria in the Guidelines for Field Triage of Injured Patients,
1
 one 

of the three components of the Revised Trauma Score (RTS),
2
 and one of the minimum 

acceptable neurological observations required to be documented by the National Institute for 

Health Care Excellence head injured patients.
3
 However, despite many studies demonstrating the 

utility of RR as a predictor of critical illness,
4–7

 RR is the vital sign least often recorded and most 

often completely omitted from medical documentation.
8–11

 

Direct observation of RR is cumbersome and conventional automated modalities are 

often inaccurate due to artifacts from coincident patient care activities. Continuous measurement 

of end-tidal carbon dioxide in intubated patients provides an accurate measurement of RR 

(RRCO2). RRCO2 is also possible in non-intubated patients via nasal cannula or mask
12

 but is often 

inaccurate, particularly in the non-sedated patient because of mouth breathing, mask 

displacement, and artifacts caused by activities like coughing, movement, and speaking. 

Continuous automated RR monitoring can be done with the electrocardiogram (ECG) 

impedance-derived method, but this is limited by interference from artifacts due to patient 

movement, poor ECG lead contact, or displacement. In the present study, we asked whether a 

novel non-invasive acoustic sensor applied directly to the neck of unstable trauma patients could 

provide accurate continuous RR monitoring data that performed as well as or better than RRECG-
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derived data and on a par with RRCO2-derived data in prediction models, including the RTS, for 

blood product transfusion during the first 12 hours of trauma resuscitation, the period of maximal 

risk for bleeding death.
13,14

 

 

2. METHODS 

 This study is a subgroup analysis of the Oximetry and Non-Invasive Predictors of 

Intervention Need after Trauma (ONPOINT) study. This 3-year project was designed to examine 

prediction models for life-saving interventions including blood product transfusion based on 

continuous automated physiologic data derived from novel non-invasive sensors.
15

 After 

expedited approval and waiver of informed consent from the University of Maryland School of 

Medicine and United States Air Force Institutional Review Boards, adult patients (age ≥18 years) 

admitted directly from the scene of injury to the R Adams Cowley Shock Trauma Center, 

Baltimore, Maryland, with abnormal pre-hospital shock index (≥ 0.62),
15

 were consecutively 

enrolled on arrival in the Trauma Resuscitation Unit (TRU) from December 2011 to May 2013. 

Enrollment occurred on all days and shifts when patients met eligibility criteria. For the purposes 

of the present study, we examined the first 15 minutes of continuous vital signs (VS) data, 

including VS waveforms, via BedMaster® software (Excel Medical Electronics, Jupiter, FL)  

from networked patient monitors (GE-Marquette-Solar-7000/8000, GE Healthcare, Little 

Chalfont, UK). Numeric monitored trend values of RRCO2 and GE Marquette ECG-derived RR 

(RRECG) were obtained every 5 seconds (0.2 Hz) via the Bedmaster VS server. In addition, if the 

patient’s neck could be accessed, RR was also recorded by an acoustic transducer attached along 

the medial border of the sternocleidomastoid muscle with an adhesive pad (RRa™, Masimo 

Corporation, Irvine, CA). The accuracy of this device has been reported by the manufacturer, 
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based on 26 healthy adults, as 0.18 (bias) ± 1.31 (standard deviation [SD]) bpm,
16

 but use in 

instable trauma patients has not been previously reported. We focused on the first 15 minutes 

after admission because this time frame is of special interest in acute trauma involving massive 

hemorrhage. Clinicians must gather, interpret, and act on useful information very rapidly. 

Therefore, we choose the 15-minute time window to determine whether RR could serve as an 

important factor in supporting decisions, and if its accuracy would affect its usefulness. 

Blood product use through the first 12 hours of resuscitation was documented from TRU 

and blood bank records and included units of uncrossmatched group O packed red blood cells 

(pRBC) kept in a TRU refrigerator and given in the first hour of resuscitation before 

crossmatched units are available from the blood bank. Patients were excluded if they had less 

than 5 minutes (33% of 15 minutes) of continuous VS data recorded during the first 15 minutes 

after hospital arrival.  To avoid “prediction” of events that had already occurred, the outcome of 

blood product transfusion excluded transfusions given within the first 15 minutes. 

 

3. STATISTICAL ANALYSIS 

 RRa and RRECG were compared using three methods: 1) numerical difference between 

paired RRa, RRECG, and RRCO2, 2) clinical and triage difference based on RTS, and 3) transfusion 

prediction using the features derived from RRa versus RRECG. The bias (mean difference) and 

95% limits of agreement were used to quantify the numerical difference between RRa and 

RRECG. A Bland-Altman analysis adjusted for repeated measurement
17

 was used to compare 

agreement for measurements of RRa and RRECG. RR in breaths per minute (bpm) were divided 

into five categories, designated 0 to 4: 0) RR=0, 1) RR=1-5, 2) RR=6-9, 3) RR=10-29, and 4) 
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RR ≥30.
1
 Since none of the patients had RR of 0 bpm, comparison was performed for categories 

1 to 4. 

 As RTS is a well-known trauma triage score that uses RR and has been used to predict 

the need for transfusion,
13

 we compared the RTS values obtained using each of the three RR 

measurements. We also tested the predictive power of additional RR features including time 

series of RRa and RRECG and their mean; 1
st
, 2

nd
, and 3

rd
 quartiles; and the cumulative amplitude 

and duration of RR below (<10 bpm) and above (>29 bpm) thresholds. The percentage of time, 

mean, and SD in the low and high RR ranges was also calculated. Patient age and sex 

adjustments were included in every model. 

 Prediction models used a generalized linear model with a “boosting” algorithm family for 

comparison and validation. The reason for selecting this “boosting” algorithm was to create a 

“strong” model from an ensemble of “weak” models
18

 to allow comparison of the best 

performance of different RR features. To avoid over-fitting, the “weak” models were regularized 

by the elastic net method, a weighted combination of least absolute shrinkage and selection 

operator (LASSO) and ridge regression. To examine the generalization capability of the models, 

we used 4-fold cross-validation repeated 25 times, with stratified sampling to test prediction 

performance. Area under the receiver operating characteristic (ROC) curve was used to compare 

the transfusion prediction performance of the RRa and RRECG features with the RTS. The RTS 

was calculated based on the models for the first 15 minutes average RRa or RRECG,
19

 and  

Delong’s method was used to compare ROCs.
20

 True positive rate (TPR or “sensitivity”), true 

negative rate (TNR or “specificity”), and positive predictive value (PPV or “precision”) were 

reported. All statistical analyses, predictive model building, and evaluations were implemented 
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with R software version 3.1.1 (R Development Core Team, Vienna, Austria). p<0.05 was 

considered statistically significant. 

 

4. RESULTS 

 Of the 1200 patients enrolled in ONPOINT over the 18-month study period, 1191 had 

RRECG data recorded in the first 15 minutes after admission and 358 had acoustic monitoring, 14 

of whom were also monitored via RRCO2 and so were able to provide simultaneously recorded 

data from all three RR monitoring and data recording modes for the purposes of this study. Table 

1 summarizes the demographics and mechanism of injury of all enrolled patients. The two 

groups that are the focus of this study, RRa/RRECG (n = 358) and RRa/RRECG/RRCO2 (n=[358 – 

344]=14), did not differ demographically or in mechanism of injury from the wider ONPOINT 

study group monitored by RRECG alone. 

 

4.1. Numerical Comparison 

 Among the 14 RRa/RRECG/RRCO2 patients, Bland-Altman analysis adjusted for repeated 

measurement showed a bias of 0.8 bpm for RRa and RRCO2 and 6.9 bpm for RRECG and RRCO2, 

and the respective 95% limits of agreement were -9.2 to 10.8 and -13.1 to 26.8 (Figures 1-3). 

RRECG tended to overestimate RRCO2 or RRa, while RRa and RRCO2 were systematically similar. 

As shown in Table S1 (Supplemental Digital Content), measures of volatility showed a smaller 

mean square of RRa and RRCO2 between and within groups than RRECG and RRCO2. Table S2 

(Supplemental Digital Content) shows mean, SD, and median of the first 15 minutes after 

admission for the 14 RRa/RRECG/RRCO2.  There was no difference between the first 15 minutes 

mean RRa and RRCO2 (p=0.42); however, the difference of 7.9 mean bpm ± 4 SD between RRECG 
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and RRCO2 was significant (p=0.0002). Among the 358 RRa/RRECG patients, the difference of 8.6 

mean bpm ± 5 SD was also significant (p<0.0001).  

To overcome the Bland-Altman plot’s limitation as an overall evaluation that does not reflect 

measurements in different categories with different clinical meaning, we used the confusion 

tables to count the number of points that each pair of sensors had measurements in the same or 

different categories. When two sensors have RR measurement in the category, the clinicians may 

make decisions similarly based on either sensor’s reading. Tables S3a-S3c show that RRa and 

RRCO2 had more agreed measurements in the same clinical categories. RRECG had more data 

points off the main diagonal cells, compared with RRa and RRCO2.     

 

4.2 Transfusion Prediction 

 Predictions of blood product use in the first 3, 6, and 12 hours after admission for the 358 

RRa/RRECG patients are shown in Table 2. RR-based transfusion prediction performance on 

testing dataset resulted in ROCs of 0.59 to 0.66 but a true positive prediction rate of 0.70 to 0.89. 

The ROC 95% confidence intervals derived from models using RTS calculated from RRa or 

RRECG were not statistically different. Transfusion prediction models using RTS as a predictor 

had a significantly higher ROC than RRa or RRECG alone (Table 2). 

 

5. DISCUSSION 

RR and respiratory patterns are linked with other physiological changes. Because of its 

importance, RR is included in mortality prediction scoring systems such as RTS and the Trauma 

Injury Severity Score. However, because of the difficulty of accurate measurement, RR is often 

ignored in trauma patient management. In this exploratory study of a novel proprietary acoustic 
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RR monitoring device deployed in the TRU of a busy Level 1 trauma center, we found that the 

RRa device produced continuous RR monitoring data that performed equivalently to that derived 

from end-tidal carbon dioxide monitoring on intubated patients.  

We isolated RR as a single data source for transfusion prediction for the purpose of 

comparing the usefulness of different RR measurements. The results show that using RRa or 

RRECG features does not predict the first 12 hours transfusion as well as using RTS calculated 

either from RRa or RRECG (Table 2). Challenging the utility of RR at all in trauma triage, a recent 

22-center French study enrolled 937 trauma patients with single-value manual recording of RR, 

RR categories of RTS, and dichotomous values (abnormal or normal) and found that RR did not 

add value in predicting mortality or prognosis.
21

 However, RR-based features had non-trivial 

TPR, 0.84-0.89, in predicting transfusion within the first 6 hours. This suggests that RR-based 

features, if accurately measured, could be used as a component in prediction models with other 

predictive features. 

This study population is the largest to date in which RRa has been measured and is the 

only study in which RR data were collected during active resuscitation of unstable trauma 

patients. Our study compared RR measured from three different sensors, including 

simultaneously in 14 of 358 patients admitted to a busy TRU and showed that RRa was 

significantly less volatile than RRECG and agreed better with RRCO2 in intubated patients, the 

latter often considered the “gold standard” measurement for RR. We believe that this work 

suggests that for the larger group of non-intubated patients, in whom end-tidal carbon dioxide is 

not an accurate option, some form of robust, accurate, and non-invasive acoustic RR monitoring 

device could be a useful alternative for RR measurement and can support more accurate RTS 

calculation than RRECG or direct-observation methods, particularly in the critical first hours of 
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trauma resuscitation. In our study, RRa also discriminated among patients who were more or less 

likely to receive blood products in the first 12 hours of care. 

Various prior studies have examined the accuracy of RRa by comparing RRa to RRCO2 in 

spontaneously breathing post-operative patients
22,23

 and have shown good agreement between 

RRa  and RRCO2  with 0 bias and -1.4 to 1.4 bpm 95% limit of agreement.
22

 A study of 53 

anesthetized patients ventilated with laryngeal masks reported a small bias with 95% limit of 

agreement of -2.1 to 2.2 bpm between RRa and RRCO2.
24

 

  Different approaches for RR monitoring have also been examined. A recent study 

compared a piezoelectric sensor RR monitor, ECG-based monitor, and nurse measurement in 48 

post-anesthesia care unit patients.
25

  Piezoelectric-derived RR had a mean difference of -0.41 

bpm (SD=1.79) compared to ECG-derived RR and a mean difference of -0.58 bpm (SD=2.50) 

compared to nurse evaluation. However this piezoelectric sensor’s accuracy in an unstable 

environment has not yet been examined. A non-contact Doppler radar-based RR sensor was 

compared with inductance plethysmographic belts around the rib cage for 24 patients who had 

surgery or received analgesics, with 95% limit of agreement of ± 5 bpm.
26

 However, the 

accuracy of this method may be limited by motion artifact.
27

 Another study of 139 healthy 

volunteers showed that RR derived from the pulse oximeter signal had good agreement with 

RRCO2, with -0.23 bpm ± 1.14 SD.
28

 If this accuracy could be extended to other clinical 

environments, a single sensor could give both RR and blood oxygen saturation, which is 

promising for use  in transfusion prediction models. 

 The potential utility of RRa extends further than RR data collection. It has been reported 

to be useful in detecting changes in depth of breathing and warning of impending respiratory 

failure after resuscitation
29

 and thus to have potential value for airway and ventilation 
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monitoring. An accurate RR measurement would also be valuable if integrated into decision 

support software that detects clinically significant conditions such as over-sedation, hemorrhagic 

shock, or neurologic deterioration. Future studies of RR should focus not only on designing more 

accurate instrumentation but also on extracting additional features from RR measurement 

associated with specific clinical conditions. In addition, specific factors that interfere with 

accurate RR sensing (coughing, speaking, snoring, etc.) and are associated with other forms of 

data loss or failures of documentation need to be investigated. Mimoz et al. have reported that 

speaking, moving, and coughing affected RRCO2 more frequently than RRa.
22

 Although the 

number of events was small, they found that repeated swallowing was the only event found to 

affect RRa more than RRCO2. Our study did not examine the effect of ambient noise on RRa 

accuracy; however, our study was performed in a noisy TRU setting. Prior studies
22,23,30

 were 

conducted in intensive care units and patient recovery areas likely to have less ambient noise. 

 This is an exploratory study. It is limited by being a single-center study and one based on 

secondary sub-analysis of data gleaned from another study of the instrumentation being tested, 

and the primary study was closely related to but not specifically designed for the purposes of this 

study. Moreover, the lack of comparison of RR measurement in the field, e.g. during helicopter 

transportation or on the battlefield, leaves more work to be done to evaluate the accuracy of 

acoustic-sensor-derived RR and its usefulness in support of clinical decision-making in austere 

and unstable settings.   

 

6. CONCLUSION 

 Our study of RR data collected during the critical initiation of trauma patient assessment 

and resuscitation shows that RRa has less volatility and correlates better with RRCO2 than RRECG 
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and can provide RR data that are potentially clinically useful in decision support models such as 

those for blood product use. RRa may be useful as an alternative to RRECG for ongoing 

assessment of non-intubated patients and may improve the accuracy of triage scoring systems.  
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TABLE 1. Demographic, Mechanism of Injury, and Outcome Characteristics of Patients 

Characteristic n=1191* n=358** n=14† p
1 vs. 2

 p
1 vs. 3

 p
2 vs. 3

 

Mean age, yr (SD) 40.4(17.7) 39.1(17.4) 41.3(10.6) 0.20 0.47 0.28 

Admission GCS 

(1
st
,2

nd
,3

rd
 quartiles) 

14,15,15 15,15,15 12,14,15 - - - 

Sex, n (%)       

   Male 823 (69.1) 252 (70.4) 12 (85.7) 0.69 0.29 0.35 

   Female 368 (30.9) 106 (29.6) 2 (14.3) - - - 

Injury type, n (%)       

   Blunt 955 (80.2) 298 (83.2) 12 (85.7) 0.23 0.86 0.90 

   Penetrating 176 (14.8) 53 (14.8) 2 (14.3) 0.94 0.74 0.74 

   Other 60 (5.0) 7 (2.0) 0 (0.0) 0.02‡ 0.81 0.64 

Mechanism of injury, n 

(%) 

      

   Motor vehicle 

associated 

557 (46.8) 174 (48.6) 7 (50.0) 0.58 0.98 0.87 

   Falls 253 (21.2) 83 (23.2) 2 (14.3) 0.48 0.76 0.65 

   Interpersonal violence 230 (19.3) 72 (20.1) 2 (14.3) 0.80 0.89 0.85 

   Other 151 (12.7) 29 (8.1) 3 (21.4) 0.02‡ 0.57 0.21 

Outcome, n (%)       

   pRBC 15 min-3 h 80 (6.7) 10 (2.8) 4 (28.6) 0.008‡ 0.008‡ <0.001‡ 

   pRBC 15 min-6 h 106 (8.9) 12 (3.4) 4 (28.6) <0.001‡ 0.04‡ <0.001‡ 

   pRBC 15 min-12 h 121 (10.2) 18 (5.0) 5 (35.7) 0.004‡ 0.008‡ <0.001‡ 

*n=1191 patients from the ONPOINT study.
 

**n=358 patients with both acoustic and ECG-based respiratory rate monitoring recorded. 

†n=14 intubated patients with acoustic, ECG-based, and RRCO2 monitoring. 

‡Statistically significant difference at the significance level 0.05. 

Mann-Whitney U test was used to test mean age difference among groups. Chi-square test 

was used to compare two proportions. 

GCS, Glasgow Coma Scale.  
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TABLE 2. Performance Evaluations for Models Predicting Packed Red Blood Cell Transfusion 

(n=358) 

Model TPR TNR PPV ROC ROC 95% CI 

Within 15 Minutes – 3 Hours after Admission 

RRa 0.86 0.59 0.14 0.59 0.56 – 0.62 

RRECG 0.84 0.64 0.10 0.61 0.57 – 0.64 

RTSa* 0.89 0.75 0.14 0.73 0.69 – 0.76 

RTSECG** 0.93 0.71 0.20 0.74 0.71 – 0.78 

Within 15 Minutes – 6 Hours after Admission 

RRa 0.88 0.65 0.10 0.66 0.64 – 0.69 

RRECG 0.89 0.63 0.12 0.64 0.61 – 0.67 

RTSa 0.90 0.71 0.14 0.71 0.67 – 0.74 

RTSECG 0.87 0.75 0.19 0.70 0.66 – 0.74 

Within 15 Minutes – 12 Hours after Admission 

RRa 0.86 0.53 0.09 0.61 0.60 – 0.63 

RRECG 0.70 0.67 0.16 0.61 0.58 – 0.63 

RTSa 0.79 0.75 0.20 0.73 0.70 – 0.75 

RTSECG 0.77 0.77 0.20 0.72 0.70 – 0.74 

  *RTSa: Revised Trauma Score calculated using RRa as the RR component. 

**RTSECG: Revised Trauma Score calculated using RRECG as the RR component. 

CI, confidence interval. 
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Figure 1. The Bland-Altman plot adjusted for repeated measurement for the agreement of RRECG 

and RRCO2 (n=14). Bias=6.9 and 95% limit of agreement is -13.1 to 26.8. Right and top subplots 

show the density of x and y directions in the Bland-Altman plot. This plot illustrates that RRECG 

tends to overestimate RRCO2, as the average gets higher. 
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Figure 2. The Bland-Altman plot adjusted for repeated measurement for the agreement of RRa 

and RRCO2 (n=14). Bias=0.8 and 95% limit of agreement is -9.2 to 10.8. Right and top subplots 

show the density of x and y directions in the Bland-Altman plot. This plot illustrates that RRa 

and RRCO2 have small bias and narrow limits of agreement. 
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Figure 3. The Bland-Altman plot adjusted for repeated measurement for the agreement of RRECG 

and RRa (n=14). Bias=7.7 and 95% limit of agreement is -13.8 to 29.2. Right and top subplots 

show the density of x and y directions in the Bland-Altman plot. This plot illustrated that there is 

a trend between RRECG and RRa, as the difference grows larger when the average increases.  

 

 

 

 




