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Abstract 

Subtle and profound changes in autonomic nervous system (ANS) function affecting sympathetic and parasympa-
thetic homeostasis occur as a result of critical illness. Changes in ANS function are particularly salient in neurocriti-
cal illness, when direct structural and functional perturbations to autonomic network pathways occur and may 
herald impending clinical deterioration or intervenable evolving mechanisms of secondary injury. Sympathetic and 
parasympathetic balance can be measured quantitatively at the bedside using multiple methods, most readily by 
extracting data from electrocardiographic or photoplethysmography waveforms. Work from our group and others 
has demonstrated that data-analytic techniques can identify quantitative physiologic changes that precede clinical 
detection of meaningful events, and therefore may provide an important window for time-sensitive therapies. Here, 
we review data-analytic approaches to measuring ANS dysfunction from routine bedside physiologic data streams 
and integrating this data into multimodal machine learning–based model development to better understand phe-
notypical expression of pathophysiologic mechanisms and perhaps even serve as early detection signals. Attention 
will be given to examples from our work in acute traumatic brain injury on detection and monitoring of paroxysmal 
sympathetic hyperactivity and prediction of neurologic deterioration, and in large hemispheric infarction on predic-
tion of malignant cerebral edema. We also discuss future clinical applications and data-analytic challenges and future 
directions.

Keywords: Autonomic nervous system, Machine learning, Traumatic brain injury, Ischemic stroke, Neurological 
decline

Introduction
The autonomic nervous system (ANS) regulates invol-
untary physiologic processes of cardiovascular func-
tion, respiration, and digestion via a widespread neural 
network. The ANS is divided into the parasympathetic, 
sympathetic, and enteric divisions differentiated by their 
conservation or expenditure of energy. Sympathetic and 
parasympathetic divisions have afferent and efferent 
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fibers to the central nervous system ensuring the careful 
modulation of target organs for physiologic homeostasis. 
Supraspinal control of autonomic function is modulated 
by the brainstem, hypothalamus, and cortical centers 
forming a carefully regulated neural network controlling 
vital functions [1].

Autonomic control of the cardiovascular system 
requires precise neural regulation. Sensory informa-
tion relating to cardiovascular function is conveyed by 
changes in baroreceptors and chemoreceptors. Barore-
ceptors, which sense a change in pressure in vessel walls, 
are found in the carotid sinus and aortic arch. Chemo-
receptors, which are affected by changes in the partial 
pressure of oxygen and carbon dioxide, are found in the 
carotid bodies and the aorta. Both relay information to 
the hypothalamus via the vagus nerve and solitary tract 
nucleus in the medulla. Based on the afferent input, 
smooth and cardiac muscles are activated via the vis-
ceral motor pathway to respond accordingly, balancing 
sympathetic and parasympathetic drive and maintain-
ing homeostatic function of cardiac output and vascular 
tone. The nucleus ambiguous and dorsal vagal nucleus 
provide parasympathetic input to the heart via the vagus 
nerve, whereas sympathetic input travels via neurons in 
the intermediolateral column at T1 to T5 of the spinal 
cord and is modulated by the ventrolateral medulla and 
paraventricular nucleus of the hypothalamus [2].

Higher cortical input from the insula and other fore-
brain regions also play vital, yet complex, roles in the 
modulation of sympathetic and parasympathetic out-
put; meta analyses of lesion studies and neural network 
mapping have identified a central autonomic network 
connecting insular, prefrontal, and cingulate cortices, 
amygdala, hippocampus, hypothalamus, and thalamus 
with projections to medullary and spinal nuclei control-
ling cardiac function [3–6]. Cardiovascular autonomic 
control is derived from reciprocal connections to target 
organs through the peripheral nerves, spinal cord, brain-
stem, and cortical and subcortical brain areas. Disruption 
anywhere along these pathways, as occurs in neurocriti-
cal illness, can alter autonomic homeostasis resulting in 
measurable cardiovascular physiologic changes [7–9].

Autonomic dysfunction has been described in a 
across many nonneurologic disease states such as sep-
sis [10], acute myocardial infarction [11], and traumatic 
shock [12]. It has been shown to be a predictor of mor-
tality in patients with myocardial infarction [13] and 
chronic heart failure [14]. Critically ill pediatric and adult 
patients with sepsis have separately been shown to have 
autonomic dysfunction that is inversely related to dis-
ease severity and subsequently improves in the recovery 
state [15–17]. Autonomic dysfunction in critical illness, 
as exemplified in sepsis, is likely due to the maladaptive 

response of the body to physiologic distress leading to 
prolonged sympathetic activation and an imbalance 
between sympathetic and parasympathetic output [18]. 
Studies of patients with brain injury have shown similar 
findings of autonomic dysfunction [19–24]. Given the 
various neuroanatomic regions of autonomic control 
susceptible to injury due to trauma, stroke, hemorrhage, 
and inflammatory processes, autonomic dysfunction 
phenotypes are of particular interest in neurocritical 
care as potential markers of disease severity or predictors 
for neurological deterioration. To this end, quantitative 
physiologic modeling of ANS function may represent a 
promising and underused tool in neurocritical care.

Modeling ANS with Continuous Vital Signs
Signal Processing
Real-time assessment of the ANS signal can be per-
formed by leveraging continuous data streams of vital 
signs from bedside monitors. At our institution, each 
patient monitor collects real-time 240-Hz waveforms 
and 0.5-Hz data trends, which are transferred via secure 
intranet to a dedicated server and archived [25]. Physi-
ological data collected through this system include elec-
trocardiographic (ECG), photoplethysmographry (PPG), 
carbon dioxide, arterial blood pressure, and intracranial 
pressure (ICP) waveforms. Data trends include heart 
rate (HR), respiratory rate (RR), temperature, oxygen 
saturation, end-tidal carbon dioxide, ICP, as well as any 
other continuous monitoring device that can interface 
with our bedside monitoring system (GE Marquette-
Solar-7000/8000; General Electric, Fairfiled, CT).

In addition to continuous physiologic data, informa-
tion with different formats and temporal resolutions can 
be collected and used for analysis. These include ordinal 
or categorical data (e.g., Glasgow Coma Scale [GCS], age, 
sex), radiological images, text (medical records, clinical 
notes), and other relevant data (adverse events, treat-
ments, laboratory tests, etc.).

Validated and automated medical data processing tech-
niques may distill useful information from the above-
generated massive amounts of data. Such processed 
data can be used either directly by clinicians to recog-
nize physiological changes or pipelined to predictive 
models for algorithmic-assisted decision making. Auto-
mated decision support tools may enhance clinicians’ 
capacity to interpret complex, multimodal patient data. 
Although continuous ICP and electroencephalogram 
(EEG) monitors are often used in neuroscience intensive 
care units (ICUs), they may not be clinically indicated in 
all patients. Similarly, continuous blood pressure moni-
toring via invasive arterial lines can be used for assess-
ment of blood pressure variability in select populations. 
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However, noninvasive ECG and PPG sensors are applied 
to all critical care patients and thus are crucial for gener-
alizable physiologic models.

HR variability (HRV), derived from the ECG waveform, 
refers to several features calculated from a set of methods 
evaluating beat-to-beat changes in the heart rhythm, and 
has long been used to evaluate cardiac autonomic func-
tion associated with neurological disorders [26–28]. As 
described, autonomic dysfunction is a potential compli-
cation following acute brain injury such as severe trau-
matic brain injury (TBI) [29], where quantitative changes 
in HRV can occur. For example, in the work by Bagu-
ley et  al. [30], patients with and without dysautonomia 
showed different HRV responses to afferent stimuli fol-
lowing TBI. Further, HRV is often used as the preferred 
method to assess autonomic dysfunction in general criti-
cal illness including sepsis [15–17].

In calculating HRV features from bedside ECG moni-
toring systems, data preprocessing, including detection 
and removal of artifacts, must first occur. To this end, 
we initially filter out extreme values that are outside of 
the sensor’s measurement range. Next, we apply robust 
smoothing algorithms to reduce noise [31, 32]. Finally, 
we identify QRS peaks from the ECG. Figure 1 shows a 
typical PQRST segment, which identified a pair of con-
secutively identified R peaks. Automated identification 
of these peaks occurs by searching all local maxima and 
setting physiologically reasonable parameters to detect R 
peaks by following a few simple rules [33]. For example, 
the minimal distance between adjacent R peaks can be 
restricted by the maximum possible HR (e.g., 200 bpm), 
and a point may qualify as an R peak if its prominence 

is higher than a threshold (empirically determined as half 
of typical peak-valley distance), so that flat signals with 
small fluctuations will not be included. Standard Python 
library was used for peak detection (Scipy v.1.5.2). 
Z-scores are calculated for detected normal-to-normal 
(NN) intervals and intervals with a z-score larger than 
3 are removed. Additionally, sophisticated algorithms 
such as the Pan Tompkins method may be used [34]. This 
automatically preprocessed data generates NN intervals.

From the above derived NN intervals, HRV features in 
time domain, frequency domain, and nonlinear dynamics 
can be calculated based on the Task Force of the Euro-
pean Society of Cardiology and the North American 
Society of Pacing and Electrophysiology [13]. Table  1 
lists common HRV features and their definitions. Time 
domain features are the simplest features, representing 
statistical summaries of the RR interval length (Fig. 1a), 
and they can be calculated over short (e.g., 5 min) or long 
(e.g., 24 h) time periods. Applied clinically, reduced time 
domain HRV has been observed in several neurological 
and nonneurological diseases [13].

Frequency domain features are derived from the HRV 
power spectrum analysis and focus on the differen-
tial contributions of sympathetic and parasympathetic 
divisions of the ANS on heart rate. There are four com-
ponents used in calculating frequency domain HRV, 
including ultra very low frequency (LF) (0–0.003  Hz), 
very LF (0.003–0.04 Hz), LF (0.04–0.15 Hz), and high fre-
quency (HF) (0.15–0.4 Hz) power. Figure 1c and d show 
the power spectrum density calculated by the Welch 
and Lomb methods, respectively. The HF component is 
related to the parasympathetic system [13], and the LF/

Fig. 1 Illustration of ECG segment with detected P, Q, R, S, T, and R-R interval. Plots of HRV features. a Distribution of R–R intervals. b Poincare plot 
for nonlinear domain features. c The power spectrum density plot for frequency domain features using Welch’s method. d The power spectrum 
density plot for frequency domain features using Lomb’s method. ECG, electrocardiography, HRV, heart rate variability (color figure online)
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HF ratio has been used to quantify the changing relation-
ship between sympathetic and parasympathetic activi-
ties [35], with controversy as to whether it is an accurate 
measure of cardiac sympatho-vagal balance [32]. Addi-
tional methods for assessing the ANS measure nonlinear 
dynamic features of HRV. Nonlinear dynamic methods 
were designed to capture the complex, dynamic interac-
tions between heart rhythm, respiration, and hemody-
namic states. They include measures of signal entropy, 
fractal correlation properties, and mathematical descrip-
tors of the Poincare plot (PP) [36–38]. The PP describes 
the dependence between successive NN intervals and is 
graphically displayed in Fig. 1b. An ellipse is fitted to the 
plot which generates two parameters: standard devia-
tion of the PP perpendicular to the line of identity and 
standard deviation of the PP long the line of identity. 
Nonlinear dynamics features have been used in predict-
ing vascular events for hypertensive patients [39], need 
for blood transfusions in patients with trauma [40], and 
secondary neurological deterioration after TBI [41].

Data Visualization
Significant amounts of unprocessed data may lead to cog-
nitive overload for ICU clinicians responsible for patients 
with multiple complex acute and nonacute medical 

problems. An automated physiological data-organizing 
and information-summary system can present aggre-
gated information from multiple data sources, provide 
at-a-glance summaries of clinical data, and assist with 
prioritizing care for multiple patients. A longitudinal 
display of vital sign patterns may improve patient assess-
ment and clinical decision making. Figure 2 demonstrates 
a patient’s 12-hour vital sign (VS) trajectories using a data 
visualization tool or “viewer” aimed to achieve this goal. 
VS in normal ranges is displayed in green. Yellow and 
red colors are used to highlight VS segments in abnor-
mal ranges. Those ranges are predefined based on clini-
cal consensus. In the right panel, two two-dimensional 
plots show the longitudinal changes of systolic blood 
pressure versus HR, and cerebral perfusion pressure ver-
sus ICP (blue, 12 h ago, red, recent). If the points in the 
two-dimensional diagrams move toward the bottom right 
(or top left) corner, it may suggest the patient has deterio-
rated (or ameliorated) bleeding issue or neurologic issue.

In addition to visualizing real-time vital sign trends, 
our viewer can serve as a platform to display relevant 
data transformations and decision support tools. For 
example, we can display real-time cerebrovascular pres-
sure-reactivity index (PRx) alongside other VS, showing 
instant relationships between hemodynamic changes and 

Table 1 Common HRV variables and their definitions

HF high frequency, HRV heart rate variability, LF low frequency, NN normal-to-normal, PP Poincare plot, SD1 standard deviation of the Poincare plot perpendicular to 
the line of identity, SD2 standard deviation of the Poincare plot long the line of identity, SDNN standard deviation of normal-to-normal intervals, UVLF ultra very low 
frequency, VLF very low frequency

HRV vVariable Definition Unit

Time domain

 Mean NN Mean NN intervals ms

 SDNN Standard deviation of NN intervals ms

 RMSSD Root mean square of the sum of the squares of differences between adjacent NN intervals ms

 SDNN index Mean of the SDNN values of each 5-min segment ms

 pNN50 Percentage of NN intervals that differences between adjacent NN intervals > 50 ms %

 pNN20 Percentage of NN intervals that differences between adjacent NN intervals > 20 ms %

Frequency domain

 Total power Spectral power of NN intervals 0 to − 0.4 Hz ms2

 UVLF Spectral power of NN intervals 0–0.003 Hz ms2

 VLF Spectral power of NN intervals 0.003 to − 0.04 Hz ms2

 LF Spectral power of NN intervals 0.04 to − 0.15 Hz ms2

 HF Spectral power of NN intervals 0.15 to − 0.4 Hz ms2

 LF/HF Ratio of LF to HF power –

Nonlinear dynamics

 SD1 Standard deviation of the Poincare plot (PP) perpendicular to the line of identity ms

 SD2 SD of the PP along the line of identity ms

 SD2/SD1 Ratio of SD2 to SD1 –

 Alpha1 Short term fluctuation slope in detrended fluctuation analysis –

 Alpha2 Long term fluctuation slope in detrended fluctuation analysis –

 Ellipse area Area of the ellipse fit of PP –
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cerebrovascular autoregulation. PRx has been proposed 
as an indicator of loss of autoregulatory reserve [42] and 
is calculated as a moving correlation coefficient between 
the mean arterial pressure (MAP) and ICP. Given a short 
time window, about 40 consecutive averaged MAP and 
ICP in 4–5 min are used for calculation [43]. When cer-
ebral autoregulation is intact, CBF does not change sig-
nificantly with mean blood pressure. In this situation, 
calculated PRx should be close to zero showing weak cor-
relation between MAP and ICP. When cerebral autoregu-
lation is impaired after severe head injury, CBF increases 
or decreases with blood pressure, and the absolute value 
of PRx moves away from zero indicating a strong linear 
correlation between MAP and ICP.

Clinical Examples
The real-time physiologic data viewer may also be pro-
gramed to demonstrate clinically relevant risk scores 
derived from validated data-derived mathematical mod-
els. Such model outputs may represent specific dysau-
tonomia phenotypes associated with risk for neurologic 
deterioration in different clinical scenarios such as TBI 

or large hemispheric infarct (LHI), or they may alert cli-
nicians to physiologic syndromes such as paroxysmal 
sympathetic hyperactivity (PSH) after TBI or evolving 
neurogenic shock after spinal cord injury (SCI). Details 
regarding such clinical applications are provided below.

Paroxysmal Sympathetic Hyperactivity (PSH)
Paroxysmal sympathetic hyperactivity is a prototypical 
example of clinically relevant dysautonomia in neurocrit-
ical illness, fundamentally characterized by an imbalance 
between the sympathetic and parasympathetic nervous 
systems resulting in recurrent episodes of hypertension, 
tachycardia, hyperthermia, diaphoresis, and motor rigid-
ity, with numerous deleterious downstream effects [44, 
45]. Although it can occur in a variety of clinical scenar-
ios, it is most often reported following moderate to severe 
acute TBI, in upwards of one third of critically ill patients 
beginning around the second week of hospitalization 
[44–50]. TBI-related PSH appears to be both a marker 
of injury severity and an independent risk factor for poor 
outcome [47, 51]. As such, it may represent a promis-
ing treatment target to mitigate secondary morbidity in 

Fig. 2 ICU vital sign viewer. Real-time display of 12 hour of continuous vital sign data with color coded values based on predefined thresholds. This 
display includes calculated values such as the shock index (SI) and cerebrovascular autoregulation (PRx). In the far right panel, cross relationship 
between systolic blood pressure and heart rate as well as CPP and ICP are displayed with color-coding indicating the time data were acquired (blue, 
12 h ago, red, current). CPP cerebral perfusion pressure, ICP intracranial pressure, ICU intensive care unit (color figure online)
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at-risk patients. However, its potential in this regard has 
been limited by prevailing diagnostic uncertainty, under-
recognition, and a lack of reliable quantitative detection 
and monitoring tools. Treatments are often reactive to 
the most extreme physiologic derangements and there-
fore delayed past a critical window for mitigating sec-
ondary injury. In 2014, an expert consensus-based PSH 
assessment measure (PSH-AM) standardized terminol-
ogy, clinically defined PSH, and proposed a quantita-
tive metric for PSH diagnostic likelihood and symptom 
severity (Table  2) [44]. Several subsequent studies have 
validated the PSH-AM as a sensitive but not specific tool 
for PSH diagnosis [49, 50], but a number of limitations 
have impeded its widespread adoption and utility as a 
quantitative detection and monitoring tool. For example, 
tabulation of the PSH-AM requires manual information 
gathering often limited by incomplete documentation, 
continued reliance on subjective clinical inference and 
the exclusion of other causes, and a one-size-fits-
all approach to VS derangements. High-resolution 

physiologic data streams capable of probing the integrity 
of the autonomic nervous syndrome remain underused.

At present, no studies have attempted to mathemati-
cally model the physiologic derangements characteristic 
of PSH. However, hypothesis-generating studies inves-
tigating objective physiologic features associated with 
clinically defined PSH are emerging. For example, a study 
by Baguley and colleagues [52] predating the PSH-AM 
compared patients with TBI without transient sympa-
thetic arousals versus with transient sympathetic arousals 
and persistent dysautonomia, finding that at seven days 
post injury there were no differences in standard physi-
ologic measurements at rest, but physiologic responses to 
nociceptive stimulation diverged between groups. Specif-
ically, they observed a decrease in HRV features includ-
ing HF power and LF/HF ratio and greater increases in 
HR compared with baseline in patients with TBI with 
sympathetic arousals, especially in those who went on 
to show persistent evidence of dysautonomia at 2 weeks 
post injury. Other studies have identified early physi-
ologic predictors of clinically defined PSH including fever 

Table 2 Paroxysmal sympathetic hyperactivity-assessment measure (PSH-AM)

PSH paroxysmal sympathetic hyperactivity

Clinical feature scale (CFS) 0 1 2 3 Score

Clinical feature scale (CFS)

Heart rate < 100 100 to − 119 120 to − 139 ≥ 140

Respiratory rate < 18 18 to − 23 24 to − 29 ≥ 30

Systolic blood pressure < 140 140 to 159 160 to − 179 ≥ 180

Temperature < 37 37 to − 37.9 38 to − 38.9 ≥ 39

Sweating Nil Mild Moderate Severe

Posturing during episodes Nil Mild Moderate Severe

CFS subtotal

Diagnosis likelihood tool (DLT); score 1 point for each feature present

Clinical features occur simultaneously

Episodes are paroxysmal in nature

Sympathetic over-reactivity to normally non-painful stimuli

Features persist ≥ 3 consecutive days

Features persist ≥ 2 weeks

Features persist despite treatment of alternative differential diagnoses

Medication administered to decrease sympathetic features

≥ 2 episodes daily

Absence of parasympathetic features during episodes

Absence of other presumed cause of features

Antecedent acquired brain injury

DLT subtotal

Combined total (CFS + DLT)

PSH diagnostic likelihood Unlikely < 8

Possible 8 to − 16

Probable > 17
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[53] and higher systolic blood pressure [47]. In combina-
tion with rules derived from clinical PSH criteria, these 
findings may aid in the development of machine learning 
models for automatic PSH detection and quantification.

A major challenge in building such machine learning 
models is that labels of positive and negative PSH (i.e., 
episodes with or without PSH) instances are not pre-
sent naturally in the dataset, and diagnostic uncertainty 
makes expert rules and ground truths difficult to obtain. 
This is in contrast to well-defined clinical end points used 
for the development of early warning scores [54] and 
for prediction of discrete outcomes. In addition to pop-
ulation-based studies, exploratory visualization of high 
resolution multimodal physiologic data from prototypi-
cal patients also may be used to generate hypotheses for 
building machine learning models and pathophysiologic 
theories. For example, Fig.  3 shows exploratory power 
spectral densities over time in a prototypical patient with 
TBI with PSH (top panel) versus without (bottom panel), 
demonstrating higher power very LF (> 8-h period) vari-
ation in HR and systolic blood pressure over time in the 
patient with PSH. Machine learning for PSH detection 

can incorporate such hypothesis using weak supervision 
[55, 56] and active learning [57, 58] approaches that lev-
erage data visualization tools, expert review, and PSH-
AM scores as noisy approximations to ground truths. 
Weakly supervised machine learning allows for initial 
imprecise labeling of training data (which can account 
for PSH diagnostic uncertainty), and active learning 
involves an iterative process of machine-generated label 
refinement by an expert. These approaches necessitate 
collaboration between clinician “experts” and data scien-
tists. In an example data-analytic pipeline, we are explor-
ing an event mining framework [59] to identify defining 
features of PSH from each data stream, including par-
oxysmal (sudden onset) and transient (short duration) 
characteristics, using unsupervised anomaly detection 
methods [60–63]. Anomaly detection first estimates a 
stable personalized baseline for each data stream fol-
lowed by identifying a list of deviating events, which may 
be fused to check for simultaneity across multiple param-
eters (another component of PSH diagnostic criteria). 
Interpretable machine learning methods such as tempo-
ral rule learning [64] may also be used to derive an initial 

Fig. 3 Physiologic and anatomic correlates of PSH. Continuous vital sign wavelet transformation modeling and representative susceptibility-
weighted magnetic resonance imaging axial slices from patients with traumatic brain injury (TBI) with (upper panel) and without (lower panel) 
paroxysmal sympathetic hyperactivity (PSH). a, b Represent power spectral analyses of heart rate (HR) and systolic blood pressure (SBP) fluctuations, 
respectively, over different periods across time, demonstrating high power in very low frequency (long period) bands in a patient with PSH, whereas 
d and e demonstrate the absence of high power low frequency fluctuations in a patient with TBI without PSH. c Demonstrates frontal hemorrhagic 
contusions and traced lesions within the corpus callosum region of interest in a patient with PSH. f Demonstrates similar hemorrhagic contusion 
pathology without lesions in the corpus callosum in a patient with TBI without PSH (color figure online)
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set of rules. Models of higher complexity such as random 
forests and deep learning architectures such as ResNets 
[65] may further refine these rules, which will ultimately 
generate annotations for expert visualization and valida-
tion (Fig. 4). Validated rules may be used to automatically 
produce labels to be used to build supervised machine 
learning models to generate output in the form of a con-
tinuous PSH index score, which can be further refined to 
describe multidimensional features of PSH, such as fre-
quency, duration, and magnitude.

Once a quantitative PSH index has been derived, anal-
yses of its clinical validity, use, and pathophysiologic 
associations can proceed in a relatively straight-forward 
manner. In addition to providing an intermediate end-
point important for future clinical trials, the PSH index 
may better clarify neuroanatomic and neurophysiologic 
correlates of PSH, which in turn may lead to the devel-
opment of alternative mechanistically grounded thera-
pies. Initially conceptualized as “diencephalic autonomic 
epilepsy” [66] theories regarding the pathophysiology 
of PSH have evolved over time, with the most accepted 
contemporary theories proposing that structural 
and functional damage to the central autonomic net-
work lead to a final common pathway explained by the 

excitatory-inhibitory ratio model [45]. This theory posits 
that sympathetic paroxysms are driven by disconnection 
of inhibitory pathways to the brainstem and spinal cord, 
where maladaptive dendritic arborization leads to over-
excitable sympathetic circuits with diminished capacity 
for higher control of inappropriate physiologic responses 
to stimuli [45]. Radiographically, diffuse axonal injury is 
most commonly reported [19, 50, 53, 67], in concordance 
with such disconnection models. In an age-matched and 
GCS-matched PSH case–control study, our group found 
that initial computed tomography (CT) imaging findings 
of diffuse axonal injury, complete cisternal effacement, 
SAH/IVH, and absence of focal contusions were associ-
ated with higher risk for inpatient development of PSH 
[47]. Additionally, a magnetic resonance imaging diffu-
sion tensor imaging(DTI) study found that decreased 
fractional anisotropy (FA) in the posterior limb of the 
internal capsule and the splenium of the corpus callosum 
could distinguish PSH from non-PSH cases [53]. Our 
preliminary work investigating clinical magnetic reso-
nance imaging (MRI) lesions within central autonomic 
network brain regions’ associations with PSH-AM scores 
in a large critically ill TBI cohort also identified suscep-
tibility-weighted imaging (SWI) lesions in the corpus 

Fig. 4 Anomaly detection for identification of PSH events. This plot illustrates an example of multivariate anomaly detection framework we are 
exploring for identifying PSH events from continuous physiological time series data. The top panel presents time plots of HR, RR, and oxygen 
saturation overlaid with abnormal episodes (red-colored band) obtained from a combination of anomaly detection methods, human validation, 
and labeling functions within a weak supervision framework. The bottom panel illustrates a continuous PSH index once the supervised machine 
learning model is built that contrasts the PSH and non-PSH periods. HR heart rate, ML machine learning, PSH paroxysmal sympathetic hyperactivity, 
RR respiratory rate, SPO2 oxygen saturation (color figure online)
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callosum (as in Fig. 4c) and T2 flair lesions in the medial 
temporal lobes as independently associated with higher 
PSH diagnostic likelihood [68]. Neuroimaging, like physi-
ologic studies, have suffered from imprecise and sub-
jective methods for identifying and quantifying PSH; a 
quantitative PSH index could aid in neuroanatomic phe-
notyping of this prototypical syndrome of dysautonomia 
that may represent a modifiable risk factor for poor TBI 
[68] outcome.

Predicting Neurological Decline
Traumatic Brain Injury (TBI)
Since the pioneering work of Dr. R Adams Cowley in the 
mid-twentieth century, acute trauma care has stressed 
the importance of rapid assessment and skilled treatment 
during the “golden hour” [69], when interventions are 
most likely to prevent long-term morbidity and mortal-
ity. Although monitoring techniques have greatly aided 
the rapid ability to dynamically evaluate for secondary 
decline (e.g., hemorrhage), our current ability to acutely 
assess for secondary ND after TBI remain rudimentary. 
Initial risk stratification after injury, particularly prior 
to neuroimaging, is based on clinical judgment, clinical 
examination, and assessment of static vital signs [70], 
which only provide limited information. Additional 
essential information can be derived from the analysis of 
continuous vital sign data and waveform analysis during 
the acute resuscitation period.

In combination with routine clinical assessments in 
the first hour after injury, continuous vital sign monitor-
ing for variability and waveform feature analyses from 
either the ECG or PPG can be used to reliably predict 
early (< 48  h after injury) neurological decline (ND) in 
patients with TBI. As an initial analysis, we found that 
without regards to patient age, sex, GCS, or initial set of 
vital signs, PPG and ECG analyses alone during the first 
15  min of acute resuscitation were equivalent to clini-
cal models that incorporated age, initial GCS, and sex to 
predict ND after TBI [41]. Moreover, a model combin-
ing PPG data with clinical characteristics within 15 and 
60  min (golden hour) after arrival yielded an improved 
prediction power for ND. These analyses reflect the great 
potential of assessing the physiological state by utiliz-
ing continuous vital sign data to enhance the clinical 
assessment.

As discussed previously, HRV has been used in stud-
ies of neurologic disorders [13, 27] as a marker of the 
function of the ANS [71]. Specific to TBI, dysautonomia 
has been closely linked to increased ICP or decreased 
cerebral perfusion pressure [72]. The pulse oximeter 
is a commonly used sensor that can provide rich data 
by generation of a PPG waveform providing additional 
information on HR, oxygen saturation, and RR [73]. The 

PPG peaks correspond to the R peaks from ECG, there-
fore, the peak-peak interval from PPG can be used as 
an alternative to the NN interval calculated from ECG 
recordings. Lu et  al. [74] found PPG variability was 
highly correlated to HRV and could serve as an alterna-
tive measurement. Several studies have correlated similar 
physiological measurements with autonomic changes in 
patients with TBI with the severity of injury and, asso-
ciation with increased ICP [20, 75, 76] as well as overall 
morbidity and mortality [20, 76, 77].

This novel approach for early detection of ND uses 
continuous ECG and PPG data from the first minutes of 
arrival, prior to ICP monitoring and CT imaging, further 
signifying the viability of physiologic and waveform anal-
ysis as a robust early marker in the resuscitation phase. It 
is important to note that within 15 min of arrival, patients 
are still undergoing physical examination and assess-
ment, and not under the influence of sedatives or anal-
gesics that may confound the signal from the continuous 
vital sign data collection. The ability to accurately discern 
a risk for ND early in the acute resuscitation phase may 
provide for an opportunity to develop targeted inter-
ventions to mitigate secondary injury, including rapid 
triage for timely, definitive treatment for patients with 
TBI. We are currently validating our preliminary find-
ings in both retrospective and prospective cohort studies 
(NCT05084352).

Large Hemispheric Infarction (LHI)
Patients with LHI, as defined by infarct of the majority or 
complete distribution of the middle cerebral artery terri-
tory, account for less than 10% of acute ischemic strokes 
[78]. However, approximately half of patients with LHI 
develop malignant cerebral edema (MCE) which is asso-
ciated with a mortality rate between 40 and 80% [79–81]. 
Early ND is commonly seen in patients with MCE due to 
LHI and is associated with increased mortality [82–85]. 
Swift identification of patients at risk for early ND and 
MCE is essential to ensure timely targeted medical and 
potentially surgical interventions to mitigate second-
ary brain injury. Both nonmodifiable (e.g., diabetes mel-
litus, prestroke modified Rankin score, initial National 
Institutes of Health Stroke Scale Score [NIHSS], stroke 
volume on MRI) and modifiable (e.g., number of passes 
during endovascular treatment) factors have been identi-
fied as predictors of early ND and evolution to MCE [86, 
87]. More recently studies have found autonomic dys-
function as defined by HRV to predict poor outcome [88] 
and to be an independent risk factor for early ND [89] in 
acute ischemic stroke. Physiologic data are therefore a 
potentially rich resource for assessing autonomic integ-
rity in patients with LHI that may serve as an early pre-
dictor for patients who will develop early ND and MCE.
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Central control of the ANS is performed by a complex 
neural network of several cortical and subcortical areas 
as described previously. The insular cortex, often affected 
in patients with acute ischemic stroke and particularly 
LHI, plays a vital role in cardiac modulation via the heart-
brain axis. Both rat and human experiments have shown 
that cardiac afferent fibers travel through the thalamus to 
the posterior insula with integration of information from 
the rostroventral insula [6]. Stimulation of the rostral ver-
sus caudal insula has shown varying effects on HR with 
rostral posterior insular stimulation resulting in tachy-
cardia and caudal posterior insular stimulation resulting 
in bradycardia [90]. The posterior insula has also been 
implicated in worsening heart block and ventricular 
arrhythmias leading to death in rat models suggesting the 
rostro-caudal axis is of particular importance [91].

Though the cardiac effects of the rostro-caudal axis 
have been more clearly defined, lateralization of sym-
pathetic and parasympathetic control has shown mixed 
findings in both animal and human studies. Histori-
cally, the right insula was thought to be responsible for 

sympathetic control and the left insula for parasym-
pathetic control [92, 93]. Recent studies have not sup-
ported a clear delineation of laterality for sympathetic 
and parasympathetic control of the insula with insular 
stimulations in humans showing no difference in tachy-
arrhythmias or brady-arrhythmias between the right and 
left insular cortices [94]. However, insular subregions 
have shown laterality preference with tachycardia more 
often evoked by stimulation of the right ventral posterior 
insula and the left dorsal posteromedial insula whereas 
bradycardia was evoked by stimulations of the right 
dorsal insula and the left ventral insula [94]. The insu-
lar cortex as demonstrated in animal and human studies 
provides a lens into potential ANS dysfunction and pre-
sents a unique opportunity for identifying early ND and 
MCE in patients with LHI.

As seen in Fig.  5, using our vital sign viewer, patients 
with LHI can have a noticeable change in their HR pre-
ceding a herniation event, part of the Cushing triad [95], 
presenting a potential window of opportunity for predic-
tion and early goal-directed management. When filtering 

Fig. 5 Changes in physiological state related to cerebral edema. A patient presenting at the Neuro-ICU with a large hemispheric stroke after failed 
thrombectomy for a left middle cerebral artery occlusion. At time of the initial CT, early signs of cerebral edema are present (a) but the clinical 
examination does not change until nearly 24 hours later, when a subsequent CT scan is performed demonstrating radiographic herniation (b). The 
patient is subsequently taken to the operating room for decompressive hemicraniectomy (c). As noted in our vital sign viewer, progressive bradycar-
dia in the hours preceding the clinical and radiographic herniation (between a and b) is visually apparent, representing a window of opportunity for 
physiologically based early warning signal. CT computed tomography, HR heart rate, Neuro-ICU neuroscience intensive care unit, SBP systolic blood 
pressure (color figure online)
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the signal to monitor HRV and waveform changes, one 
can observe the initial subtle changes within hours of 
injury that continue to evolve over subsequent hours. In 
our preliminary analyses, we have found that changes in 
the LF/HF ratio within 12  h of stroke onset may be an 
independent predictor of early ND, and RR interval was 
an independent predictor of MCE [96]. Our findings sug-
gest that even within the first 3 h of hemodynamic moni-
toring, early identification of autonomic dysfunction via 
HRV may provide a window of opportunity to impact 
therapeutic approaches toward early ND and MCE.

Spinal Cord Injury (SCI)
Despite advances in acute trauma, neurosurgical, ICU, 
and rehabilitative care, traumatic SCI remains a costly 
multisystemic disease with limited effective treat-
ment options. Disability from SCI arises most obviously 
from loss of motor and sensory function, which is typi-
cally measured and classified by the American Spinal 
Injury Association (ASIA) scoring system in clinical and 
research practice [97]. ASIA scores provide important 
prognostic information that may guide management. For 
example, early ASIA motor scores may guide the deci-
sion to pursue early tracheostomy [98], and discharge 
ASIA impairment scores help guide long-term progno-
sis for recovery. However, ASIA scores do not measure 
SCI-related dysautonomia, which results from damage 
to descending control of efferent sympathetic nerves and 
may clinically manifest as neurogenic shock, autonomic 
dysreflexia, orthostatic hypotension, arrythmias, and 
widespread deleterious effects on visceral organ system 
function [99]. Studies have suggested that autonomic 
injury severity may be discordant with sensory and motor 
injury severity [100]. In recognizing the importance of 
the ANS in SCI care and prognostication, the Interna-
tional Standards to document remaining Autonomic 
Function after Spinal Cord Injury was first developed in 
2009 [101]. Analogous to ASIA scoring and the PSH-AM, 
its Autonomic Standards Assessment Form allows for 
characterization and documentation of clinical manifes-
tations of specific autonomic functions in patients with 
SCI, and in doing so, may provide standards for physi-
ologic data correlation.

Quantitative approaches to autonomic dysfunction 
using physiologic data in the acute phase after SCI may 
vary depending on the goal and hypothesis of research. 
As in the PSH example, weakly supervised machine 
learning may be employed for early detection and moni-
toring of deleterious and potentially intervenable forms of 
SCI-associated dysautonomia. Physiologic data also may 
be modeled in conjunction with clinical, radiographic, 
and neuroanatomic injury data, such as level of injury 
and intramedullary lesion length, for better multimodal 

injury phenotyping. Loss of LF power has most com-
monly been associated with reduced sympathetic control 
in cervical SCI [100, 102], for example. Alternatively, as in 
our ND examples, physiologic data may be used to model 
and predict clinical endpoints. As of yet, no large studies 
have evaluated the prognostic value of early markers of 
dysautonomia on short and long-term multisystemic and 
global outcomes after SCI. Given that dysautonomia, like 
sensorimotor dysfunction, is an important contributor to 
morbidity and mortality after SCI, we hypothesize that 
early measures of dysautonomia may improve prediction 
of clinically meaningful outcomes and generate hypoth-
eses for targeted therapeutic interventions.

Challenges/Future Directions
Additional conditions that have used advanced tech-
niques to monitor ANS function include subarachnoid 
hemorrhage, multiorgan dysfunction syndrome, sepsis, 
and cardiac arrest [103, 104]. Applications are not limited 
to those previously studied and discussed; profound ANS 
changes occur in other neurologic diseases often encoun-
tered in the ICU, including autoimmune (e.g., NMDA) 
encephalitis [105], Guillain Barre Syndrome [106], and 
status epilepticus [107]. However, big data and machine 
learning approaches to dysautonomia in these scenarios 
will be limited by their rarity and may necessitate multi-
center collaborations.

The assessment of autonomic function in the critically 
ill provides unique information concerning pathogenesis, 
treatment strategies, and prognosis; however, additional 
foundational data are needed to refine analyses to be 
readily available for routine clinical use. The highly sensi-
tive nature of ANS dysfunction across all injury types can 
result in a lack of disease-specific signal, making discern-
ing relevant signals difficult. It is unclear whether final 
common pathways or disease-specific physiologic pheno-
types will be of greater clinical use.

Beyond the consensus definitions (e.g., the Task Force 
of the European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology [13]), 
there is also a lack of uniformity regarding timing, depth 
and duration of ANS signal changes that are deemed 
clinically relevant. Moreover, many concomitant inter-
ventions (nonpharmacological and pharmacological) 
have a profound impact on the ANS signal, highlighting 
the importance of developing real-time data annotation. 
Integrated information systems that incorporate clini-
cal and physiologic data are needed. At present, physi-
ologic data monitoring and storage systems exist outside 
of the electronic medical record, and clinical annotation 
is primarily performed manually and post hoc for model 
development. Real-time, automated integration of medi-
cation administration and common interventions such as 
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endotracheal intubation, bedside procedures, and surger-
ies, is essential to enhance the generalizability and clini-
cal validity of models. Additional relevant bedside data 
streams from automated pupillometry, galvanic skin 
response, EEG, invasive neuromonitoring, as well as lab-
oratory studies can be used in targeted patient popula-
tions at risk for ANS dysfunction or ND to provide more 
nuanced and complementary information regarding 
dynamic sympathetic/ parasympathetic balance.

Conclusions
The complex and dynamic changes that occur as a uni-
versal response to neurological injury may go undetected 
in standard practice, in which hourly vital signs, clinical 
examinations, laboratory, and other low-resolution data 
requires human interpretation for clinical decision mak-
ing. Machine-based, high-resolution ANS monitoring 
may extend clinicians abilities to detect meaningful phys-
iologic changes during critical periods for medical or sur-
gical intervention. Although promising work in this area 
applied to TBI and LHI has been discussed, we believe 
that continued study and collaborative innovations in 
technology and data-analytic approaches are needed 
to fully leverage continuous vital sign measurements of 
ANS dysfunction to improve clinical care of patients with 
acute brain injury.
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