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Abstract:

Permutation entropy is computationally efficiemthust to outliers, and effective to measure coniglex
of time series. We used this technique to quattiéycomplexity of continuous vital signs recordeahf
patients with traumatic brain injury (TBI). Usingnoutation entropy calculated from early vital sign
(initial 20~20% of patient hospital stay time), tmdilt classifiers to predict in-hospital mortaléyd
mobility, measured by 3-month Extended Glasgow @ut Score (GOSE). Sixty patients with severe
TBI produced a skewed dataset that we evaluateacfarracy, sensitivity and specificity. The overall
prediction accuracy achieved 91.67% for mortakityd 76.67% for 3-month GOSE in testing datasets,
using the leave-one-out cross validation. We agfgied Receiver Operating Characteristic analysis t
compare classifiers built from different learningthmods. Those results support the applicability of
permutation entropy in analyzing the dynamic betwawt TBI vital signs for early prediction of
mortality and long-term patient outcomes.

1. Introduction

Traumatic brain injury (TBI) is the most common sawf admission to emergency care and trauma-
related death in the U.S. civilian population amd imajor cause of death and disability in combat
causalities [1,2]. In most modern intensive cagsuiiCUs), vital signs (VS), such as heart rat®{H
blood pressure (BP), and oxygen saturation (Sp@png others, are collected in high-quality,
automated, continuous electronic data stream&@eestial assessments of important physiological
functions, providing basic evidence of patienttist. Because VS are an early warning system of
physiologic perturbation, they are usually recorbedrly in the ICU setting. However, in most modern
ICUs, the massive quantities of high-quality datadpiced create both a challenge to store, anadyek,
interpret and an opportunity to explore novel ademhanalytic methods for predicting outcomes. Such
predictive algorithms can support advanced instntat®n and decision-assist tools that have the
potential to significantly improve clinical outcorfar these very ill patients.

To discover the intrinsic patterns that charactedantinuous, multivariate, clinical time seriesaaiety

of methods can be used, such as entropy, autolzibore autoregressive models, and structure models
[3]. One strategy is to embed the time serieshigber dimensional space and then compute various
entropies for the elements of the embedded timessdZonventional entropies such as Shannon entropy
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Rényi entropy and Tsallis entropy can be calculgiedn the distribution of elements of the embedded
time series. The Rényi entropy of a time seriesbess used to detect spatially varying multivariate
relationships [4] and to study brain injuries [Bdeheart rate variability [6,7]. The Tsallis entyapf the
elements of a time series has been used to mdméor injuries after cardiac arrests [8], and tpliave
the accuracy of gene regulatory networks inferg¢@fe

Bandt and Pompe [10] introduced permutation egtaspa new measure of complexity of non-linear
time series. Zanin et al [11] provide an extensexgew of various biomedical applications of
permutation entropy. Permutation entropy has lnsed to predict the onset of epileptic episode® fro
EEG data by considering changes in the permutatitropy of the EEG time series over time [12,13].
Veisi et al [14] find that permutation entropy damused to effectively classify EEG signals intonmal
vs. epileptic with an accuracy of 85% even for higioisy EEG. Physiologically, epileptic
episodes/symptoms are manifested with determirbgtih@vior of the EEG signals, while healthy states
are characterized by higher non-chaotic state bititia[7]. Permutation entropy has also been uged
study sleep using EEGs [15,16], to identify motifsthe EEG signals of patients given fast acting
anesthetic drugs [17,18], and to identify tempgeaie expression profiles [19]. Bian et al [20] use
permutation entropy to identify heart rate varidypilinder different physiological conditions. Berpal.
[21] use ordinal patterns of beat-to-beat heaet vatiability from an EKG signals of 40 patientsovh
suffered from myocardial infraction, and try tosddy them based on whether they survived for more
than two years or not. They achieve a classificadiccuracy of 85%. Permutation entropy can also
highlight forbidden patterns: state-space pattpersdutations appear very infrequently or not af24].

It can also be used to quantify non-linear intéoast among time series by considering the relative
entropy of the joint Takens embeddings of such seres versus the product of independent Takens
embeddings.

In this research effort, we use permutation enttopyerive features from continuous, multivaridiee
series for outcome prediction of patients with sevieBl. The remainder of this paper is organized as
follows. In section 2, we briefly introduce the pritation entropy and the entropy map that we used f
guantifying the characteristics of the dynamic sgstWe use different independence tests to assist i
variable selection. In section 3, we describe titagkt and experiment design. We apply the perioatat
entropy to predict mortality and 3-month Extendddsgow Outcomes Scale (GOSE), and present
experiment results, evaluated by accuracy andrfeeunder the receiver operating characteristicGRO
curve. We conduct preliminary interpretation ofioed patterns derived from the VS. Finally, in sect

4, we discuss and summarize the results.

2. Method

2.1 Ordinal patterns and per mutation entropy

We assume that the physiological status of liviiigds is dynamic but has identifiable and repeated
patterns. Likewise, we assume that these pattathisendifferent in the healthy, injured, and/dr il
individuals and that the patterns will be disceyniifferent from each other. For instance, if fregient

is also losing blood, blood pressure (BP) will faleart rate (HR) increases to compensate for the
decreased BP to ensure adequate circulation argkoagion of the brain, and the increase in HR Wgual
increases the BP, at least temporarily. If bloas loontinues, BP falls, and clinicians will usuajiye



fluid, including blood, to raise the BP and ensalequate oxygenation. These changing patterns of HR
and BP are accompanied by changes in intracrareaspre (ICP), cerebral perfusion pressure (Crid), a
So on.

Bandt and Pompe [10,23] suggested an approaciméoseries analysis in which they embedded a
continuous time series as a symbolic sequencairtther space, a process which they called
“permutation entropy”. One major ingredient of petation entropy is the ordinal pattern. The ordinal
pattern of a sequence of elemens.., x,, is the permutation (re-arrangememt}= (i, iy, ..., i) that
sorts the amplitude values in ascending orderaoth< x;, < - < x; .

The order. permutation entropy of a time serigs  is calculated as follows. Lat, be the ordinal
pattern (i.e. the sorting permutation) for thersegt of the time series under the sliding window of
lengthL that ends at;,, i.e. the subsequenge_; .4, ..., x¢. LetS; = {r;} be the set of all those unique
(alphabet) ordinal patterms. The time serieg; y corresponds to the sequercer;:t =L, ..., N > of
N — L + 1 ordinal patterns from the alphal$gt The entropy of this sequence of ordinal pattéesiise
permutation entropy of the time serigs . For example, the Shannon permutation entropgfised in

.
Hy=— ) P(m)log(P(my), ()
TKESL

whereP () is the frequency af, in the sequence r; >. In the work presented here, we use the Rényi
entropy with parameter of the sequence ©, > defined as

1
RE =———log| > P(m)" | @

The parameter in the Rényi entropy acts as a selector of prditiasi It assigns almost equal weight to
each possible probability whenis sufficiently close to zero. Whenis larger, it puts more weight on
higher probabilities. We can use this parametasgign different weights on events of different
probabilities.

2.1.1 Theoretical foundations of permutation engrop

The idea of permutation entropy, introduced by Bamdl Pompe [10,23], relies on a large body of
previous work on using information theory to stulkg phase space (state-space) of dynamical systems
[24]. For example, the Kolmogorov-Sinai (KS) entop used extensively to characterize the prolsbili
distributions (random processes) induced by fipéditions of the state-space of dynamical systems
[24,25].

The underlying distribution of the states is araimant measure of a dynamical system (invarianeund
smooth transformations of the state space), whilpy functions provide us with a way to compare
such distributions. Due to the intractability iertving explicit analytic expressions of the state
distributions, researchers have resorted to nualezitimates from the data. To this end, of paldic
importance is the Takens-Whitney delay embeddirmgranonstruction theorem [24] that relates the



dimensiond of the system’s attractor and the dimenseh{ 1) of the embedding space that is
sufficient to reconstruct those properties of th&tesn’s attractor that are invariant under smooth
transformations. Characterizing the attractor dfaamical system enables us to predict the system’s
long-term behavior (since the attractor contaihstates that are mapped by the system back istata
in the attractor). The Takens-Whitney theorem fghes an effective way to estimate the dimensiothef
attractor by estimating the Kolmogorov-Sinai entra an embedding of a system’s state-space.

One particular partition of the space of a Takezlaylembedding is obtained via permutations as
follows. Consider for simplicity a univariate diste-time time series, and its Takens delay embedding
of orderm with delay lagr: X; = (Xt—(m+1)‘t'--Xt—Tt'Xt) e R™. Partition the spacR™ into m! subsets,
each labeled by a unique permutatioof [1..m], with each subset containing all pointift that can

be sorted by the subset’s labeling permutation.

Permutation-based partitions are more robust teen@nd other non-linear distortions and artifdeas t
value-based fixed-size partitions of the state spsicice they depend on the relative order ratizer the
exact values of the time series. Furthermore, dieioto obtain reliable entropy estimates with fixetzk
partitions, one needs long time series (in theroofld™ in order to cover all blocks of such fixed-size
partitions); permutation-based entropy estimatesatagequire long time series. The robustness of
permutation entropy makes it particularly attraetior mining vital signs collected in real clinical
settings, without expensive pre-processing anchalgeof such signals.

Recall that the uniform distribution has maximuntrepy among discrete distributions of bounded
support. Large values of permutation entropiesespond to dynamical systems with substantial
uncertainty/randomness (divergence in time ofaflitinearby system states) and small values inglicat
rather deterministic behavior (fixed points or slenfimit cycles).

2.2 Multivatiate time series

Given M variables and a window si¢, vital signs within that window are viewed as @fiee of size

M X L. Fig.1 demonstrates one example of finding ordirdderns from a finite sequence of time series.
Suppose that there are three vital sigis( 3) available for inclusion: ICP, HR, and SBP. Let th
window size bd. = 2. Therefore, one slice constitutes 6 points, wingans that we embed VS in a
window of size 2 into a higher dimension 6. Theetao choices to permute in a slice. The first one
considers one slice as one bag. All values indhgsare sorted in ascending order. For exampleigid,
slicea can be written linearly as the sequence: (ICP)1I44; (HR)59.5, 59.4; (SBP)142, 138. Labeling
each value 1~6, the values of this sequence carbihsorted into ascending order by applying a
permutatiorn< 1 2 4 3 6 5 >. Another choice is to sort within each variablen concatenate them. For
the same example, if we sort ICP, HR, SBP in diseparately, and concatenate their local permutatio
index, we obtain the pattern122 12 1 >. The second method would help keep each variablated
even if the variables may have similar range, arth maintain the ordinal patterns from each vhriab

2.3 Variable dependencies

More than 50 different types of VS are recordethahospital. To make the prediction model simpie,
selected a group of VS that are frequently usedimical diagnosis.



We use tests of statistical independence to expidations between VS and to select a set of VS for
calculating entropy values to sketch the changmatrents' physiological status. If two variablesda
strong linear correlation, then including both ahtées is not expected to be helpful in capturingemo
permutation patterns. On the other hand, if twdaldes are almost independent or have a non-linear
relationship, using both may favor including marermation.

Recall that two random variabl&sandY, with probability density functionsy (x) andpy (y), are
independent if and only if their joint density fat aspyy (x, y) = px(x)py(y). To evaluate how far

away from independence two random variables aeeqmiltual information (MI) can be used to quantify
the difference betweewyy (x, y) andpy (x)py (y) [26]. Recently, Reshef et al.[27] proposed a new
measure, the maximal information coefficient (MI€@) assess a wide range of correlations between two
variables. MIC takes real values between 0 andgdresenting the two ends of no relationship angdenoi
free relationship of linear or nonlinear form resipeely.

Although MIC is claimed to be powerful to discowewide range of relationships between two varigbles
Tibshirani et al.[28] argue that the MIC is infario distance correlation [29,30] in many indeperwe
tests. In light of this, we compare the MIC andalise correlation coefficients for all pairs of redtes.

In Fig.2a, MIC scores are plotted agaipgd show the strength of linear and nonlinear i@test There
are some interesting observations that can be faiethis plot. First, most of the VS pairs shomar
form of relationship despite their mortality outoesni.e. the same color dots in the plot clustetdased
regions. Second, most pairs of variables show wealelations, with MIC ang both being close to 0.
Third, both MIC ang suggest that CPP versus HR and CPP versus Sp@2diatively stronger linear
relationships. We further use the distance coigglab explore the relationships for all pairs efested
vital signs. In Fig.2b, the MIC scores mainly agwath the relationship discovered by the distance
correlation coefficients.

Fig.2 indicates that most pairs of variables araklyedependent or related to each other. Such weak
dependency can be further confirmed by the scpktés of VS pairs. In Fig.3, the scatter plotssome
pairs of vital signs show that there are no cleesar nor other functional relationships betweearséh
variables. For example, in clinical practice, oxyge provided essentially constantly to severejyred
patients. Most of the time SpO2 stays close towiflout being strongly related to SBP or other
variable. In Fig.3c, we see most points cling Brtical line SpO2=100%.

2.4 Evaluations

To evaluate results, not only the accuracy, but tile sensitivity, specificity and ROC analysis are
utilized to compare performance of different classs. The ROC is a tool to depict the tradeofflextn
sensitivity and specificity. One major reason wemdhe ROC AUC for classifier comparison is thed t
dataset is skewed, and the ROC AUC is insensitithe skewness of datasets [31]. This property of
ROC curves provides us a way to evaluate the @lasswithout worrying about the datasets from vahic
they were trained. Instead of using one singletpaia can use the instance statistics to proddal a
ROC curve by calculating the class label scorek Pbvost et al. [32] described a method of caltng
the ROC by assigning a score to each instanceghahes the leaf of the decision tree. That score i
equal to the ration of positive class labels agsiigio that leaf during training. Platt [33] suggelsa way



of estimating posterior probability from the outdita support vector machine by fitting a sigmoid
function.

3. Experiments and Results

3.1 Data and setup

With the approval from the institutional review b@gIRB) of University of Maryland School of
Medicine, continuous, automated electronic VS datkected over the course of hospitalization from
patients with severe TBI were analyzed using peatran entropy to predict in-hospital mortality aBwd
month GOSE outcomes. Our dataset was collectedgl2008 and 2009 from 60 sequentially admitted
individuals, 9 female and 51 male, 8 of whom diddlevin hospital. The average duration of stay in
hospital was 16 days (ranging from 1.5 to 53 da§8)patients remained in the hospital longer than 1
week; and 27 patients stayed longer than 2 week®ndy the 52 patients discharged from the hospital
alive, follow-up interviews were carried out at ®mhs post-discharge to assess functional outcomes
patients in terms of an 8-category scale [34]: deadetative state, lower severe disability, ugsyere
disability, lower moderate disability, upper moderdisability, lower good recovery, and upper good
recovery. Categories 1 to 4 are defined as “unter (value 1) and categories 5 to 8 as “favorable
outcomes (value 0). For 3-month GOSE in our dat2&eindividuals had “favorable” outcome and 35
had “unfavorable” outcome, which, for our purpoggge a relatively balanced dataset.

The raw, every-6-second data were collected by Bedtt® server (Excel Medical Electronics, Jupiter,
FL), and were preprocessed to deal with noise dumstable attachment of sensors, patients’ movemen
and missing values. All data processing and prieg@ichodel learning were implemented in Matlab®
(2012b, MathWorks, Boston, MA). To reduce the negagffect of noise, VS data were smoothed into a
5-minute tumbling window, as previously [35]. Talllshows the percentage of missing points of six
selected VS. To utilize all information, we used kimearest neighbors' average as surrogate valdidls to
in missing points.

Determining the optimal selection of VS with whitthset up the experiment parameters can be difficul
that is, which values are optimal for the windowesand ther range of the Rényi entropy. Therefore, our
parameters were selected based on the followingiderations. First, a group of VS that are fregiyent
used in clinical diagnosis was chosen, such as@E®, SBP, SpO2, etc. Those VS with the lowest
percentage of missing points and missing data salexted to increase the chances of preserving more
patterns, therefore more accurately characteritiaghanging physiologic dynamics. A dataset wag al
tested for change of accuracy with and without ndnmga given vital sign. Correlated or dependent
variables may be included in the dataset for otgiattern finding. However, it will not be redundaa
include those variables when the relationship antbage correlated variables is not order-preserving

Using the above criteria and tests, a group of i%ewere selected (see Table 1) and tested itefgtiv
The window sizes were equivalent to VS collectionatgion of 15, of 30 and 60 minutes. In additidwe t
range for the Rényi entropy parametewas selected as 0.1 to 2.0 with step size 0.01.

The way to select VS described above is simpleeffiedtive but may also raise the question of whethe
one must include correlated variables in calcugative ordinal patterns. If two variables are not@y
linearly correlated, including both may introducera ordinal patterns than only using one of them.



fact, the shock index (SI=HR/SBP) is strongly clatied to HR and SBP, since it is the ratio of titeer
two. Because of its nonlinear functional relatiapgb HR and SBP, adding Sl in the ordinal patterns
unveils more interesting patterns that portrayitiberaction between HR and SBP. In general, wiéh th
presence of unknown correlation among the varialihesrule of thumb is a straightforward way tophel
us select a set of VS for study. Using tests dissiial independence, such as MIC or distancestation
coefficient, we also discover and exclude thosé@tie pairs with strong linear relationships. For
example, CPP shows relatively strong linear refetiips to HR and SpO2 in the independence tests.
Also it has very limited contribution to accuracygrovement when it is used with other VS. Hence? CP
was not used in the experiment, although it isngpoirtant physiological status indicator.

3.2 Prediction for mortality and 3-month GOSE

With the above setting, experiments were condukctgutedict in-hospital mortality and 3-month GOSE.
Since the sample size of 60 instances does notdorery large dataset, the leave-one-out cross
validation method was used to test the predictamueacy of our approach to new data. ). The lema-

out cross-validation method is widely used in maeHearning studies involving small datasets with 5

to 100 samples [36, pp 203]. Figures 4(b) and Slioyv the average ROC curves from the leave-one-out
cross-validation.

For each individual patient, a collection of feagibased on entropy is built as follows. Firseseld VS
of a certain length (e.g. 3 days VS) [37] are ajby time and filled in for missing values witte thk$-
nearest neighbor imputation method. Next, givelica svindow sizel, the VS within a moving window
of lengthL are sorted in bag and are represented by permusgatuch collection of permutations makes
an alphabet, where the frequency of each “wordfnfjpgation pattern) is calculated. With a vector of
instantiation of parameterin (2), a set of entropy values is calculatedifier window sizd.. Then the
second step is repeated for different parameteesdborL. In this manner, a personalized dataset of
features is created for each individual patient #gmcompasses the complexity of the patient’s
physiological status. With those features, varikings of classification methods are applied to joted
outcomes of clinical interest.

Tables 2a and 2b show confusion matrices and dwa@lracy for predicting mortality and 3-month
GOSE. Thea priori knowledge is that 13.3% died in hospital, and %8fve unfavorable 3-month
GOSE. Using early VS as defined above, a clasfiiicaree built upon permutation entropy achieved
62.50% in true positive rate (91.67% in overalllaecy) in predicting death, and 82.86% in true {pasi
rate (76.67% in overall accuracy) in predictingawtrable cases for 3-month GOSE, which are alldrigh
than thea priori. This suggests that the permutation entropy isli@pof classifying patients of different
physiological status and can handle imbalanced desribution. On the other hand, the permutation
entropy also demonstrates good performance ofgtiediusing early VS. This has potential clinical
importance in providing medical care providers wtithely prognostic information.

We then applied two other different learning methdtle support vector machine with linear kernel an
the quadratic discriminant analysis. The ROC AUEnployed to assess the performance of different
classifiers. As noted above, ROC graphs depictrdteoff between sensitivity and specificity focka
classifier in both training and testing datasets, thhe AUC measures the probability of the classifi
assigning a higher score to the positive than¢m#pative case, if one positive and one negaéise c
were to be randomly drawn. Figs. 4a and 4b shevirtihospital mortality prediction on the trainiagd
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testing sets, using the first 3 days’ VS. Figsabd 5b compare prediction power of three classifier
3-month GOSE using the last 3 days’ VS. Note thatdlassifier built by the classification tree ks
best discrimination for mortality prediction on hdhe training and the testing sets. The classifindree
also has good discrimination capability on the 3:1thadGOSE outcomes.

3.3 Basdine

In this section, we compare our results with othedels created from clinical experience to dematestr
that the permutation entropy method has stablecangbarable performance.

Many empirical models have been studied and reppdotestimate patients' current and future status.
With computer assistance, more statistical meti@sbe calculated from long duration vital signs
records. Previous work by our group [36,38] on #ame dataset studied cumulated dose of ICP
>20mmHg, CPP <60mmHg and brain trauma index (BT BEP) as features to predict functional
outcomes for patients with severe BTI, using RO@lysis and observed good predictive power for 3-
month GOSE 1-4 (AUC=0.65~0.75, p<0.05)[39].

To compare with features built from the permutagotropy, up to five features from the five VS in
Table 1 were selected. Mean values of HR, SpO2, SBRnd ICP were calculated using the first 3
days’ data for the in-hospital mortality predictj@md the last 3 days for the 3-month GOSE. Table 3
compares the performance of the classificationtitek on features from the permutation entropy trel
top three classification trees built on subsetieafures out of totdl;_, CX¥ = 31 combinations from
Table 1.

It can be observed that the classification treét bipon features created by the permutation entropy
demonstrated better performance in terms of ovacalliracy and values of AUC for both in-hospital
mortality and 3-month GOSE prediction.

3.4 Visualizing frequent patterns

As entropy calculations are not familiar to climieg, we also consider ordinal patterns with high
frequency that are associated with the “dead” autco

Since we use five VS, and each vital sign has tho#ats (when using a 15--minute window, with each
point corresponding to a 5-minute average), we @atbe index of each point of each vital sign sliece
with a two-digit integer 01-15. So, ICP sampleséhendices 01-06-11, SI samples have indices 024)7-1
SpO2 samples have indices 03-08-13, SBP samplesihdices 04-09-14, and HR samples have indices
05-10-15 as shown in Table 4. This encoding allos/8 represent the ordinal patterns as a string
("word”) of two-digit numbers. Note that an ordinzdttern is a permutation of the 15 two-digit nunsbe
01-15.

We are interested in the difference of ordinalgrait associated with the “alive” and “dead” outceme
Let f,(P;) andf, (P;) be the frequency of patteRy associated with the “alive” and “dead” outcome
respectively. The ratio(P;) = f;(P;)/f.(P;) measures the degree tRais associated with the “dead”
outcome. Since the dataset is imbalanced in miyr@litcomes, we rescateby the ratio of the outcome
frequencies 52/8. The rescaled ratio is used to adrthe patterns, so that higher ranked pattaras
mostly associated with the “dead” outcome. The ifjfdst ranked patterns are shown in Table 5.

8



Moreover, we can visualize these ordinal patteritls drawing the changing trends for each vital sign
(recall that each ordinal pattern is a permutatibdl--15). Figs.6a~6c¢, show the top three ordinal
patterns as a trend of each vital signs in eacimibbte window. The overall trend of the top 10 eats
is shown in Fig.6d. Such visual patterns togeth#r their VS values may be useful to clinicians for
further interpretation.

4. Conclusion

4.1 Summary

Using a large collection of continuous, automa#dectronic patient VS data, we derived features to
guantify the complexity of this dynamic system gspermutation entropy and found that VS features ca
predict in-hospital mortality and 3-month GOSE,piessa skewed dataset from relatively few instances
These features created by permutation entropy dstmraded promising results. Among 13.3% deaths
(58.3% unfavorable cases), we observed 91.67% lbaeeruracy (62.5% for deaths) for in-hospital
mortality prediction, and 76.67% in 3-month GOSEdxction (82.86% for bad outcomes). In comparison
with other classifiers on the same dataset, peitiontantropy predicted in-hospital mortality and 3-
month GOSE with greater accuracy and area undeet®ver operating characteristic curves (ROC
AUC=0.84, p<0.001 for mortality, and ROC AUC=0.p+0.001 for 3-month GOSE on testing sets).

Permutation entropy is capable of capturing thergsss of dynamic systems described by time series
which can then be used to create interpretablesideciules. Our study demonstrates the capacitlyief
method to identify, within the first 3 days of cackanges in VS associated with long-term outconae a
offers clinicians a potential window for early intentions that may improve patient outcome.

4.2 Future Work

In this study, we used features created by perimuatanhtropy to compare the capabilities of this
technique with AUC in prediction of outcome. Thewaacy of the prediction models can be improved by
including extra descriptive features, such as theatures studied in comparison. Furthermore, pestie

can be categorized into refined subgroups, for whiore specific models can be built by categoriting
age or types of injury.

Higher frequency data can be used to enhance gadijction. Optimal calculation of entropy requires
time series of sufficient length for a reasonalskngation of ordinal pattern distribution. Usingyher
frequency data, such as waveform data, permutatimopy may be able to create features to destirbe
system complexity in earlier time series, suchhadirst 12 hours in the hospital.

4.3 Clinical Implication

Access to valid clinical prognosis is importanthie first 72 hours of care among a group of padient
typically hospitalized for several weeks. Howetbhg overall mean time to death for people who died
TBI in our system is 24 hours [2]. Our long-ternagim this work is to provide the critical care teavith
access to valid clinical prognosis in the firstiifurs after hospital admission and even, if possibl
during pre-hospital care and transport, maximizirgpotential for timely therapeutic interventighat
can save lives and, more importantly, improve ltamga clinical outcome.
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Table 1: Percentage of available values for selected vital signs

Vital signs Percentage of available points (%)
First 1 day | First 2 days | First 3 days All
HR 90.07 93.05 94.53 87.60
Sp02 87.04 90.79 92.38 85.20
SBP 88.71 91.80 93.23 81.65
SI=HR/SBP 88.71 91.80 93.23 81.65
ICP 68.63 78.14 79.81 37.72
Cpp* 65.69 74.51 76.48 36.45

*not included due to its limited contribution to accuracy.
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Table 2: Confusion matrices for classification trees built upon features created by permutation entropy
on the testing set.

First 1 day First 2 days First 3 days
(A) (D) (A) (D) (A) (D)
(A)live 94.23% 5.77% 86.54% | 13.46% | 96.15% 3.85%
(D)ead 62.50% | 37.50% | 75.00% | 25.00% | 37.50% | 62.50%
Overall 86.67% 78.33% 91.67%
(a) In-hospital mortality

Last 3 days Last 2 days Last 1 day
(G) (B) (G) (B) (G) (B)
(G)ood 68.00% | 32.00% | 44.00% | 56.00% | 52.00% | 48.00%
(B)ad 17.14% | 82.86% | 37.14% | 62.86% | 48.57% | 51.43%
Overall 76.67% 55.00% 51.67%
(b) 3-month GOSE
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Table 3: Comparison between permutation entropy and baseline models on testing set.

Decision tree Mortality
features Accu.(%) AUC p-value
Entropy 91.67 0.84 <0.001
ICP/SpO2/HR 85.00 0.71 0.057
SBP 81.67 0.82 <0.001
SI/SBP 80.00 0.78 0.005

Decision tree

3-month GOSE

features Accu.(%) AUC p-value
Entropy 76.67 0.71 0.001
ICP/SpO2/HR 68.33 0.69 0.005
SBP 65.00 0.68 0.009
SI/SBP 63.33 0.67 0.013
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Table 4: Indices of vital signs used in the encoding of frequent ordinal patterns.

ty t t3
ICP: 01 06 11
Sl: 02 o7 12

SpO2 03 08 13
SBP 04 09 14
HR 05 10 15
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Table 5: Frequent ordinal patterns of the ICP, SI, Sp02, SBP, and HR vital signs associated with the
mortality outcome.

P; 10207120106 111308031409040510/15
P, | 0207120106 111308 0305 15 10 14 09|04
P, | 1207020106 11 08 13 03 05 10 15 04 09|14
P, | 020712010611 1308 03 10 05 15 14 09|04
P, | 0207120106 111409 04 03 08 13 15 10|05
P, | 1202 07 0106 11 08 03 13 15 05 10 09 04|14
P, | 0207120106 1108 03 1315 10 05 14 09|04
Pg | 0212 07 11 06 01 03 08 13 14 09 04 15 10|05
Py, | 0712021106010308 130409 1410 15|05
Py | 1202 07 01 06 11 09 14 04 03 08 13 15 10|05
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Figure 1: Illustration of ordinal patterns built by permutation in two ways. The exemplary time series

snippet comes from 6 points of 5-min smoothed data from one patient.
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Figure 4: ROCs of mortality classifiers built by three learning methods, using 3 days training set.
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Figure 5: ROCs of 3-month GOSE classifiers built by three learning methods, using 3 days training set.
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