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Abstract. Permutation entropy is computationally efficient, robust to
noise, and effective to measure complexity. We used this technique to
quantify the complexity of continuous vital signs recorded from patients
with traumatic brain injury (TBI). Using permutation entropy calculated
from early vital signs (initial 10∼20% of patient hospital stay time), we
built classifiers to predict in-hospital mortality, and mobility measured by
3-month Extended Glasgow Outcome Score (GOSE). Sixty patients with
severe TBI produced a skewed dataset that we evaluated for accuracy,
sensitivity and specificity. With early vital signs data, the overall pre-
diction accuracy achieved 91.67% for mortality, and 76.67% for 3-month
GOSE in testing datasets, using the leave-one-out cross validation. We
also applied Receiver Operating Characteristic analysis to compare clas-
sifiers built from different learning methods. Those results support the
applicability of permutation entropy in analyzing the dynamic behavior
of biomedical time series for early prediction of mortality and long-term
patient outcomes.

1 Introduction

Continuous vital signs (VS), such as heart rate (HR), blood pressure (BP), and
oxygen saturation (SpO2), among others, are sequential assessments of important
physiological functions, providing basic evidence of patients’ status. Because VS
are an early-warning-system of physiologic perturbation, they are usually record-
ed hourly in the intensive care unit (ICU) setting. However, in most modern
ICUs, automated electronic instrumentation is gathering these data continu-
ously, and the massive quantities of high-quality data produced create both a
challenge to store, analyze, and interpret and an opportunity to explore novel
advanced analytic methods for predicting outcomes. Such predictive algorithms
can support advanced instrumentation and decision-assist tools that have the
potential to significantly improve clinical outcome for these very ill patients.



2

A number of approaches have been suggested for utilization of VS data for
prediction of adverse outcomes. These analyses attempt to discover the intrin-
sic patterns that characterize continuous, multivariate, time-series systems. One
strategy is to embed the time series into higher dimensional space and then
compute various entropies for the elements of the embedded time series. Con-
ventional entropies such as Shannon entropy, Renyi entropy and Tsallis entropy
can be calculated given the distribution of elements of the embedded time se-
ries. The Renyi entropy of a time series has been used to detect spatially varying
multivariate relationships [9] and to study brain injuries [8] and heart rate vari-
ability [4,5]. The Tsallis entropy of the elements of a time series has been used to
monitor brain injuries after cardiac arrests [2, 24], and to improve the accuracy
of gene regulatory networks inference [15].

The initial applications of ordinal pattern and permutation entropy demon-
strate this to be very promising in quantifying and analyzing the dynamic be-
havior of biomedical and other time series. Introduced by Bandt and Pompe [1]
in 2002, permutation entropy is a new measure of complexity of time series,
and extracts qualitative information from non-linear time series. Examples in-
clude identifying temporal gene expression profiles [22], measuring the anesthetic
drug effect from electroencephalograms (EEGs) [13, 17], characterizing brain-
wave data of epileptic patients [14, 18] and sleep EEGs [3, 16], change detection
in dynamic systems [5], and financial time series [23].

In this research effort, we have focused on VS classification. Given a number
of VS sequences and their corresponding outcomes, we want to train a model
to predict the outcome for a new sequence of VS. Permutation-based distribu-
tion estimation is used to calculate the Renyi entropy of the multivariate VS
series, and to predict the in-hospital mortality and the three-month Extended
Glasgow Outcomes Scale (GOSE). The early prediction is achieved by using the
continuous automatically collected and stored electronic VS data collected in the
first 10∼20% of patient hospital stay time. To evaluate the results, we calculated
accuracy, sensitivity, and specificity to quantify the performance of classifiers,
especially for the imbalanced training/testing data sets. The Areas Under the
Curve (AUCs) of the receiver operating characteristic (ROC) are also used to
compare classifiers constructed by different learning methods. Using the first
3 days’ VS of 5-minute time resolution, overall 91.67% prediction accuracy for
mortality (classifier AUC= 0.84, p < 0.001), and 76.67% accuracy for 3-month
GOSE (classifier AUC=0.71, p = 0.001) were achieved with the testing data set.

The remainder of this paper is organized as follows. In section 2, we briefly
introduce the permutation entropy and the entropy map that we used for quan-
tifying the characteristics of the dynamic system. In section 3, we describe the
dataset and experiment design. We apply the permutation entropy to predict
mortality and 3-month GOSE, and present experiment results, evaluated by ac-
curacy and the area under the receiver operator characteristic (ROC) curve.
Finally, in section 4, we provide discussions and summary.
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2 Method

2.1 Ordinal pattern and permutation entropy

That the physiological status of living things is dynamic but has identifiable
and repeated patterns is assumed. Likewise, we assume that these patterns will
be different in the healthy, injured, and/or ill individuals and that the patterns
will be discernibly different from each other. For example, the VS of healthy
individuals fall generally within a range of normal, whereas those of patients
suffering from severe traumatic brain injury (TBI) have VS that fall outside
of these norms. For instance, if the patient is also losing blood, blood pressure
(BP) will fall. Heart rate (HR) increases to compensate for the decreased BP to
ensure adequate circulation and oxygenation of the brain, and the increase in HR
usually increases the BP, at least temporarily. If blood loss continues, BP falls,
and clinicians will usually give fluid, including blood, to raise the BP and insure
adequate oxygenation. These changing patterns of HR and BP are accompanied
by changes in intracranial pressure (ICP), cerebral perfusion pressure (CPP),
and so on.

Bandt and Pompe [1] suggested an approach to time series analysis in which
they embedded a continuous timeseries as a symbolic sequence into another
space, a process which they called “permutation entropy.” One major ingredient
of permutation entropy is the ordinal pattern. The ordinal pattern of a sequence
of elements x1, . . . , xn is the permutation (re-arrangement) π = (i1, i2, . . . , in)
that sorts the amplitude values in ascending order so that xi1 ≤ xi2 ≤ . . . ≤ xin .

The order L permutation entropy of a timeseries x1...N is calculated as fol-
lows. Let πt be the ordinal pattern (i.e. the sorting permutation) for the segment
of the timeseries under the sliding window of length L that ends at xt, i.e. the
subsequence xt−L+1, . . . , xt. Let SL = {πk} be the set of all those unique (alpha-
bet) ordinal patterns πt. To the timeseries x1...N there corresponds the sequence
〈πt : t = L, . . . , N −L+ 1〉 of N −L+ 1 ordinal patterns from the alphabet SL.
The entropy of this sequence of ordinal patterns is the permutation entropy of
the timeseries x1...,N . For example, the Shannon permutation entropy is defined
in equation (1),

HL = −
∑
k∈SL

P (πk) log(P (πk)). (1)

where P (πk) is the frequency of πk in the sequence 〈πt〉. In the work presented
here, we use the Renyi entropy with parameter α of the sequence 〈πt〉 defined as

R
(α)
L =

1

1− α
log(

∑
k∈ST

P (πk)α). (2)

The parameter α in the Renyi entropy acts as a selector of probabilities. It
assigns almost equal weight to each possible probability when α is sufficiently
close to zero. When α is larger, it puts more weights on higher probabilities.
With this property, Renyi entropy can filter out the small probability events,
and better capture the essence of the system.
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2.2 Multivariate time series

In real applications, a single variable is generally insufficient to sketch the profile
of complex dynamic systems, because they respond to multiple factors in a non-
linear manner. For example, many VS are used to monitor TBI patient status
– HR, systolic BP (SBP), SpO2, ICP, CPP, etc. Suppose there are M variables.
Given a window size L, vital signs within that window are viewed as one slice of
size M ×L. Figure 1 demonstrates one example of finding ordinal patterns from

142.0 138.6 135.0 133.1 135.1 133.3 · · ·
59.54 59.48 59.16 59.38 60.10 59.62 · · ·
12.36 14.44 14.00 14.80 18.92 18.20 · · ·ICP

HR

SBP

slice 1 slice 2 slice 3

patterns

slice1: 1 2 4 3 6 5

slice2: 1 2 3 4 6 5

slice3: 2 1 4 3 6 5

or

1 2 2 1 2 1

1 2 1 2 2 1

1 2 2 1 2 1

Sort by bag Sort by row

Fig. 1: Illustration of ordinal patterns built by permutation in two ways. The
exemplary time series snippet comes from 6 points of 5-min smoothed data from
one patient.

a finite sequence of time series. Suppose that there are 3 vital signs (M = 3)
available for inclusion: ICP, HR, and SBP. Let the window size be L = 2. There-
fore, one slice constitutes 6 points, which means that we embed VS in a window
of size 2 into a higher dimension 6. There are two choices to permute in a slice.
The first one considers one slice as one bag. All values in this bag are sorted in
an ascending order. For example, in Figure 1, slice 1 can be written linearly as
the sequence: (ICP)12.36, 14.44; (HR)59.54, 59.48; (SBP)142.0, 138.6. Labeling
each value 1∼6, the values of this sequence can then be sorted into ascending
order by applying a permutation 〈1 2 4 3 6 5〉. Another choice is to sort within
each variable, then concatenate them. For the same example, if we sort ICP,
HR, SBP in slice 1 separately, and concatenate their local permutation index,
we obtain the pattern 〈1 2 2 1 2 1〉. The second method would help keep each
variable isolated even if they may have similar range, and hence maintain the
ordinal patterns from each variable.

With the permutation entropy, we can construct a feature for each patient,
and apply the supervised learning methods, such as decision tree, support vec-
tor machines, and discriminant analysis to build models from known outcomes.
Furthermore, instead of using a single feature, we can create a family of features
using different parameters in the entropy calculation. This strategy is more prac-
tical, for the following reasons. First, a family of features will leave the learning
methods to select the most appropriate features with the data provided. This
is always desired since we have limited knowledge to determine optimal window
size and the parameter values for entropy calculation. Besides, using a different
set of parameters may help us find more patterns that exist in other different
spaces.
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2.3 Evaluations

To evaluate results, not only the accuracy, but also the sensitivity, specificity
and ROC analysis are utilized to compare performance of different classifiers.
The ROC is a tool to depict the tradeoff between sensitivity and specificity. One
major reason we adopt the ROC AUC for classifier comparison is that the dataset
is skewed, and the ROC AUC is insensitive to the skewness of data sets [7]. Such
property of ROC curves provides us a way to evaluate the classifiers without
worrying about the datasets from which they were trained. Instead of using one
single point, we can use the instance statistics to produce a full ROC curve by
calculating the class label scores [7]. Provost et al. [20] described a method of
calculating the ROC by assigning a score to each instance that reaches the leaf
of the decision tree. That score is equal to the ration of positive class labels
assigned to that leaf during training. Platt [19] suggested a way of estimating
posterior probability from the output of a support vector machine by fitting a
sigmoid function.

3 Experiments and Results

3.1 Data and setup

After removal of patient identifiers, continuous, automated electronic VS data
collected over the course of hospitalization from patients with severe TBI were
analyzed using permutation entropy to predict in-hospital mortality and 3-month
GOSE outcomes. These patient data were part of a larger study of prediction
factors after severe TBI that is ongoing at the R Adams Cowley Shock Trauma
Center, Baltimore, Maryland. Our dataset was collected during 2008 and 2009
from 60 sequentially admitted individuals, 9 female and 51 male, 8 of whom died
while in hospital. The average duration of stay in hospital was 16 days (range,
1.5 to 53 days); 52 patients remained in the hospital longer than 1 week; and 27
patients stayed longer than 2 weeks. Among the 52 patients discharged from the
hospital alive, follow-up interviews were carried out at 3 months post-discharge to
assess functional outcomes of patients after treatment in terms of an 8-category
scale [10]: dead, vegetative state, lower severe disability, upper severe disability,
lower moderate disability, upper moderate disability, lower good recovery, and
upper good recovery. Categories 1 to 4 are defined as “unfavorable” (value 1)
and categories 5 to 8 as “favorable” outcomes (value 0). For 3-month GOSE in
our dataset, 25 individuals had “favorable” outcome and 35 had “unfavorable”
outcome, which, for our purposes, give a relatively balanced data set.

The raw, every-6-seconds data were preprocessed to deal with noise due to
unstable attachment of sensors, patients’ movement and missing values. To re-
duce the negative effect of noise, VS data were smoothed in a 5-minute tumbling
window, as previously described [11]. In addition, gaps often occur at the start of
the vital sign sensor placement or because patients were moved between hospi-
tal units (ICU, Operating Room, etc.). Table 1 shows the percentage of missing
points of six selected VS. To utilize all information, we perform some impute
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techniques, by using the k-nearest neighbors’ average as the surrogate values.
Another approach is to use the average values of the VS as the fill-in value.

Determining the optimal selection of VS with which to set up the experiment
parameters can be difficult, that is, which values are optimal for the window size
and the α range of the Renyi entropy. Therefore, our parameters were selected
based on the following considerations. First, a group of VS that are frequently
used in clinical diagnosis were chosen, such as ICP, CPP, SBP, SpO2, etc. Those
VS with the lowest percentage of missing points and missing data were selected
to increase the chances of preserving more patterns, therefore more accurately
characterizing the changing physiologic dynamics. A dataset was also tested for
change of accuracy with and without removing a given vital sign. Correlated or
dependent variables may be included in the dataset for ordinal pattern finding.
However, it will not be redundant to include those variables when the relationship
among those correlated variables are not order preserving. Hence, for simplicity,
the rule of thumb is followed to select VS.

Using the above criteria and tests, a group of five VS were selected (see
Table 1) and tested iteratively. Then the range of window size was selected for
a block of vital signs among 3, 6, 12, equivalent to VS collection durations 15,
of 30 and 60 minutes. In addition, the range for the Renyi entropy parameter α
was selected as 0.1 to 2.0 with step size 0.01.

Table 1: Percentage of available values for selected vital signs

Vital signs
Percentage of available points

First 1 day First 2 days First 3 days All

HR 90.07% 93.05% 94.53% 87.60%
SpO2 87.04% 90.79% 92.38% 85.20%
SBP 88.71% 91.80% 93.23% 81.65%
SI=HR/SBP 88.71% 91.80% 93.23% 81.65%
ICP 68.63% 78.14% 79.81% 37.72%
CPP ∗ 65.69% 74.51% 76.48% 36.45%

∗not included due to its limited contribution to accuracy.

3.2 Prediction for mortality and 3-month GOSE

With the above setting, experiments were conducted to predict in-hospital mor-
tality and 3-month GOSE. Since the sample size of 60 instances does not form
a very large dataset, the leave-one-out cross validation method was used for
training and testing.

For each individual patient, a collection of features based on entropy are built
as follows. First, selected VS of a certain length (i.e. 3 days VS) are aligned by
time and filled in for missing values with the k-nearest neighbor imputation
method. Next, given a slice window size L, the VS within a moving window of
length L are sorted in bag and are represented by permutations. Such collection
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of permutations makes an alphabet, where the frequency of each “word” (per-
mutation pattern) is calculated. With a vector of instantiation of parameter α
in the equation (2), a set of entropy values are calculated for the window size
L. Then the second step is repeated for different parameter values for L. So far,
a group of new features are created for individual patients, which are different
measurement of their physiological status complexity. With those features, var-
ious kinds of classification methods are applied to predict outcomes of clinical
interest.

Tables 2a and 2b show confusion matrices and overall accuracy for predict-
ing mortality and 3-month GOSE. The a priori knowledge is that 13.3% died in
hospital, and 58.3% have unfavorable 3-month GOSE. Using early VS as defined
above, a classification tree built upon permutation entropy achieved 62.50% in
true positive rate (91.67% in overall accuracy) in predicting death, and 82.86%
in true positive rate (76.67% in overall accuracy) in predicting unfavorable cases
for 3-month GOSE, which are all higher than the a priori. This suggests that
the permutation entropy is capable of classifying patients of different physiolog-
ical status, and can handle imbalanced class distribution. On the other hand,
the permutation entropy also demonstrates good performance of prediction us-
ing early VS. This has potential clinical importance in providing medical care
providers with timely prognostic information.

Table 2: Confusion matrices for classification trees built upon features created
by permutation entropy on the testing set.

(a) In-hospital mortality
PPPPPPPTrue

Predicted First 1 day First 2 days First 3 days
(A) (D) (A) (D) (A) (D)

(A)live 94.23% 5.77% 86.54% 13.46% 96.15% 3.85%
(D)ead 62.50% 37.50% 75.00% 25.00% 37.50% 62.50%

Overall 86.67% 78.33% 91.67%

(b) 3-month GOSE
PPPPPPPTrue

Predicted Last 3 days Last 2 days Last 1 day
(G) (B) (G) (B) (G) (B)

(G)ood 68.00% 32.00% 44.00% 56.00% 52.00% 48.00%
(B)ad 17.14% 82.86% 37.14% 62.86% 48.57% 51.43%

Overall 76.67% 55.00% 51.67%

We then applied two other different learning methods, the support vector
machine (SVM) and the quadratic discriminant analysis. The ROC AUC is em-
ployed to assess the performance of different classifiers. As noted above, ROC
graphs depict the tradeoff between sensitivity and specificity for each classifier
in both training and testing data sets, and the AUC measures the probability of
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the classifier assigning a higher score to the positive than to the negative case, if
one positive and one negative case were to be randomly drawn. Figures 2a and
2b show the in-hospital mortality prediction on the training and testing sets,
using the first three days’ VS. Figures 3a and 3b compare prediction power of
three classifiers for 3-month GOSE using the last three days’ VS. Note that the
classifier built by the classification tree has the best discrimination for mortality
prediction on both the training and the testing sets. The classification tree also
has good discrimination capability on the 3-month GOSE outcomes.
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Fig. 2: ROCs of mortality classifiers built by three learning methods, using 3 days
training set.

3.3 Baseline

In this section, we compare our results with other models created from clinical
experience to demonstrate that permutation entropy method has stable and
comparable performance.

Many empirical models have been studied and reported to estimate patients’
current and future status. With computer assistance, more statistical metrics can
be calculated from long duration vital signs records. Previous work by our group
[12, 21] on this same dataset studied cumulated dose of ICP > 20mm Hg, CPP
< 60mm Hg and Brain Trauma Index (BTI=CPP/ICP) as features to predict
functional outcomes for patients of severe BTI, using ROC analysis and observed
good predictive power for 3-month GOSE 1-4 (AUC=0.65∼0.75, p < 0.05) [21].

To compare with features built from the permutation entropy, up to 5 features
from the 5 vital signs in Table 1 were selected. Mean values of HR, SpO2, SBP,
shock index (SI=SPB/HR), and ICP were calculated using the first 3 days data
for the in-hospital mortality prediction, and the last 3 days for the 3-month
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Fig. 3: ROCs of 3M-GOSE classifiers built by three learning methods, using 3 days
training set.

GOSE. Table 3 compares the performance of classification tree built on features
from the permutation entropy and the top 3 classification trees built on subsets
of features out of total

∑5
k=1 C

k
5 = 31 combinations from the Table 1.

It can be observed that the classification tree built upon features created by
the permutation entropy demonstrated better performance in terms of overall
accuracy and values of AUC for both in-hospital mortality and 3-month GOSE
prediction.

Table 3: Comparison between permutation entropy and baseline models on test-
ing set.

Decision tree Mortality Decision tree 3-month GOSE
features Accu. AUC p-value features Accu. AUC p-value

Entropy 91.67% 0.84 < 0.001 Entropy 76.67% 0.71 0.001
ICP/SPO2/HR 85.00% 0.71 0.057 SPO2/HR 68.33% 0.69 0.005

SBP 81.67% 0.82 < 0.001 SPO2/SBP/HR 65.00% 0.68 0.009
SI/SBP 80.00% 0.78 0.005 SI/SPO2/HR 63.33% 0.67 0.013

4 Conclusion

4.1 Summary

Using a large collection of continuous, automated, electronic patient VS data,
we derived features to quantify the complexity of this dynamic system using
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permutation entropy and found that VS features can predict in-hospital mortal-
ity and 3-month GOSE, despite a skewed dataset from relatively few instances.
These features created by permutation entropy demonstrated promising result-
s. Among 13.3% deaths (58.3% unfavorable cases), we observed 91.67% overall
accuracy (62.5% for deaths) for in-hospital mortality prediction, and 76.67% in
3-month GOSE prediction (82.86% for bad outcomes). In comparison with other
classifiers on the same dataset, permutation entropy predicted in-hospital mor-
tality and 3-month GOSE with greater accuracy and area under the receiver
operating characteristic curves (ROC AUC=0.84, p < 0.001 for mortality, and
ROC AUC=0.71, p = 0.001 for 3-month GOSE on testing sets).

Permutation entropy is capable of capturing the essentials of dynamic sys-
tems described by time series, which can be used to create interpretable decision
rules. The capability that this method displays in our study to identify within
the first 12 hours of care changes in VS associate with long-term outcome, offers
clinicians the potential for early interventions, which may improve outcome.

4.2 Future Work

In this study, we used features created by permutation entropy to compare the
capabilities of this technique with AUC in prediction of outcome. The accuracy
of the prediction models can be improved by including extra descriptive features,
such as those features studied in comparison. Furthermore, patients can be cat-
egorized into refined subgroups, for which more specific models can be built by
categorizing by age or types of injury.

Higher frequency data can be used to enhance early prediction. Optimal
calculation of entropy requires time series of sufficient length for a reasonable
estimation of ordinal pattern distribution. Using higher frequency data, such as
waveform data, permutation entropy may be able to create features to describe
the system complexity in earlier time series, such as the first 12 hours in the
hospital.

4.3 Clinical Implication

Access to valid clinical prognosis is important in the first 72 hours of care among
a group of patients typically hospitalized for several weeks. However, the overall
mean time to death for people who died of TBI in our system is 24 hours [6].
Our long-term goal in this work is to provide the critical care team with access
to valid clinical prognosis in the first 12 hours after hospital admission and even,
if possible, during pre-hospital care and transport, maximizing the potential for
timely therapeutic interventions that can save lives and, more importantly, im-
prove long-term clinical outcome.
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