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Abstract—Continuous, automated, electronic patient vital
signs data are important to physicians in evaluating traumatic
brain injury (TBI) patients’ physiological status and reaching
timely decisions for therapeutic interventions. However, missing
values in the medical data streams hinder applying many
standard statistical or machine learning algorithms and result
in losing some episodes of clinical importance. In this paper, we
present a novel approach to filling missing values in streams
of vital signs data. We construct sequences of Hankel matrices
from vital signs data streams, find that these matrices exhibit
low-rank, and utilize low-rank matrix completion methods
from compressible sensing to fill in the missing data. We
demonstrate that our approach always substantially outper-
forms other popular fill-in methods, like k-nearest-neighbors
and expectation maximization. Further, we show that our
approach recovers thousands of simulated missing data for
intracranial pressure, a critical stream of measurements for
guiding clinical interventions and monitoring traumatic brain
injuries.
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I. INTRODUCTION

Traumatic brain injury (TBI) is the most common cause
of admission to emergency care and of trauma-related death
in the U.S. civilian population and is a major cause of death
and disability in combat casualties [1], [2], [3]. Because of
its fatality rate and profound effects on survivors’ living
quality, much research has focused on support of early-
warning decision-assist systems that can maximize the po-
tential for timely therapeutic interventions to improve long-
term clinical outcomes [4], [5], [6], [7].

In most modern intensive care units (ICUs), vital signs
(VS), such as heart rate (HR), blood pressure (BP), and
oxygen saturation (SpO2), among others, are collected in
high-quality, automated, continuous electronic data streams
as basic evidence of patients physiological status. For TBI
patients, intracranial pressure (ICP), the pressure measured
inside of the closed box of the skull is of special importance.
Even relatively brief periods of elevated ICP are associated
with adverse outcome [7], and marked elevation of ICP or

elevation unresponsive to medications may require surgery
which may be lifesaving but which is also not without risk.
However, directly measuring ICP is highly invasive and
requires a surgical opening in the patient’s skull through
which a sensor is inserted. For various technical reasons,
data streams from these systems often include gaps of
missing data. Therefore, ICP data are often frustratingly
intermittent compared to other less invasive VS. Missing
values in data streams cause difficulties when applying many
statistical or machine learning methods to VS analysis.
Therefore, in dynamic data stream processing, we cannot
wait to build regression models till all data are available.
Hence, it is necessary to accurately recover or estimate
missing values using the locally available information.

We describe a novel approach for imputing missing values
for continuously collected clinical data streams. In our
approach, we construct a sequence of Hankel matrices, find
that they are of rather low-rank, and use low-rank ma-
trix completion methods, recently proposed in compressible
sensing, to fill in the missing values. We demonstrate that
our approach provides improved accuracy with respect to
other popular missing value fill-in methods.

II. RELATED WORK

Incomplete data are a pervasive problem in many re-
search fields, particularly those that depend heavily on
observational or field data, such as clinical, social, and
environmental studies. Missing data hinder the application
of many statistical analysis and machine learning methods
available in off–the–shelf software. To analyze datasets with
missing values, researchers either remove incomplete data
points or fill the vacuum with a ‘reasonable guess’[8], [9].
1 The first approach is simple but only acceptable when the
dataset is sufficiently large such that the missing cases do
not have noticeable impact on the analysis. Unfortunately,
often we have limited measurements, and thus all available

1Filling–in missing values is also known as data imputation.



data must be used. Moreover, in data stream processing,
data are handled in near–real time and in local temporal
windows, which suggests that researchers use all available
data points at each time step in order to capture the systems’
characteristics to the maximum extent.

Many methods have been developed to address the miss-
ing data problem. Traditional and intuitive methods include
filling with the mean or median [9], [10] and last ob-
servation carried forward [9]. These methods are simple
but tend to give more biased estimates. Moreover, they
ignore information from other variables and knowledge of
the system. Model–based methods have been developed to
get around this problem. Regression models and neural
networks are two examples. These methods treat the vari-
ables with missing values in deterministic ways. In many
applications, it makes more sense to consider variables in
a probabilistic approach, which is in better agreement with
natural randomness. The maximum likelihood method, such
as the expectation maximization is a very successful method
applied in missing data analysis [8], [11].

Recently, the matrix completion problem [12], [13], [14]
has attracted much attention in signal reconstruction with
a sequence of partial observations. The matrix completion
problem assumes that the matrix at hand has low rank, which
allows a set of sparse and noisy observations to recover the
matrix [13]. These methods have wide applications in many
engineering and statistical modeling problems, where order,
dimensionality, or complexity of a model can be evaluated
by the rank of an appropriate matrix. Becker et al. [15]
demonstrated an image processing application that recovers
images from noisy observations using matrix completion.
Candès et al. describe the use of matrix completion in re-
covering a signal from few elements of its Fourier spectrum,
as well as in collaborative filtering in online recommendation
systems [12], [13]. Another related problem is that of
robust Principal Component Analysis (PCA) in which we
recover partially observed low-rank matrices corrupted by
a sparse error/artifact matrix. [16]. In many applications,
such sparse matrix is actually a collection of artifacts that
we hope to remove from the original observations, or some
interesting but rare events that we want to separate from the
background, like removing face illumination, or identifying
moving objects from video frames[16].

The massive amounts of continuous electronic physiologic
data collected in modern medical centers are beginning to
come under scrutiny with advanced analytical methods. Ef-
forts to collect, process, store, and use these data effectively
have led to a number of innovative data mining and machine
learning activities. The R Adams Cowley Shock Trauma
Center (STC) associated with the University of Maryland
School of Medicine (UMSOM) has been a leader in this
process. The data used in our work was collected as part of a
multi-pronged research effort aimed at improving outcomes
for patients with severe TBI. With approval of the UMSOM

Institutional Review Board (IRB)more than 50 types of vital
signs are collected routinely on all patients admitted to the
STC Neuro-Critical Care units. Demographic, injury, and
outcome data are collated with the physiologic data and this
dataset is used extensively in studies of estimating phys-
iologic data from invasive versus non-invasive sources [4],
and in studies predicting mortality and other outcomes using
vital signs data collected early in the course of care [5], [6],
[7].

III. MATRIX COMPLETION

A. Theoretical background

Consider a matrix M ∈ Rn1×n2 . Suppose that some of
its elements are hidden (missing, unknown), and that we
desire to recover them using its available elements. Let Ω
be the set of indices (i, j) of the elements Mi,j of M that
are available/observed. Clearly, infinitely many solutions are
possible unless we impose some additional constraints on
M . One possibility is the matrix M has low rank or can be
approximated by low rank, hence it is possible to seek an X
of minimum rank that satisfies (1). The matrix completion
problem is

min rank(X)

s.t. Xij = Mij , (i, j) ∈ Ω.
(1)

Because this problem is NP–hard, its relaxation to the
following convex optimization problem is solved instead

min ||X||∗
s.t. Xij = Mij , (i, j) ∈ Ω,

(2)

where ||X||∗ is the nuclear norm of X and is defined as the
sum of singular values of the matrix X . Hereafter, matrix
completion will refer to the above convex optimization
problem.

Candès et al. [12] show that not all low rank matrices can
be recovered from a subset of their entries. The concept of
matrix incoherence 2 is used to evaluate whether a low rank
matrix can be exactly recovered. Intuitively, low coherence
means that the singular vectors of the matrix are sufficiently
spread, and it is less likely that the matrix resides in the
null space of the sampling operators. This promises a high
probability of recovering exacting a low rank matrix from a
few observations. Suppose that there are m observed entries
of M which are located uniformly at random in matrix M ,
and that M ∈ Rn×n has rank r. Candès et al [12] show that
there exist constants C and c, such that if m ≥ Cn5/4r log n
then (2) has a unique optimal solution with probability at
least 1− cn−3, that is, we can recover the matrix M .

2The incoherence of a matrix M is defined as µ(M) =

maxi6=j
MT

i Mj

||Mi||·||Mj ||
, where Mi denotes the ith column of M .



B. Block Hankel matrices for data streams

We construct block Hankel matrices from data streams
with missing values, continuously estimate the missing val-
ues within a sliding window using matrix completion, and
perform moving-window smoothing.

Consider a sequence of observations St−w+1, St−w, . . .,
St for m data stream variables within a sliding window of
length w that ends at time t, so that Si ∈ Rm is the vector of
values of these variables at time i. The km×` block Hankel
matrix Ht at time t is constructed through a partition-and-
stacking process as follows

Ht =


St−w+1 St−w+2 . . . St−w+`

St−w+2 St−w+3 . . . St−w+`+1

...
...

...
...

St−w+k St−w+k+1 . . . St

 ,
where ` = w − k + 1. In constructing matrix Ht, a moving
window of size w over the data stream variables is used.
Within this window, the sliding sequences of length k (e.g.
slices) form the columns of Ht. Matrix Ht ∈ Rkm×` can
be made square if ` = k · m. Note that missing values in
the data stream variables result into Hankel matrices with
missing entries.

Hankel matrices have important applications in system
identification [17] and signal detection and estimation [18].
A low rank Hankel matrix implies a simple system mod-
el. However, real observations are contaminated by noise
and result in Hankel matrices that tend to have full rank.
Moreover, due to missing values, we are faced with Hankel
matrices with missing entries. Hence, the matrix completion
methods reviewed in the previous section may fail for such
high rank matrices. Fortunately, we find that for the Hankel
matrices for the vital signs dataset at hand, a few of their
singular values capture most of their nuclear norm. Thus, the
matrix completion methods could be an effective method to
recover the missing entries of these Hankel matrices.

Suppose that an observation Si is missing value(s) for
some variables. Since Si appears in multiple Hankel matri-
ces, namely Hi, . . . ,Hi+w−1, we will have multiple sur-
rogate estimates for the missing values. Hence, there is
opportunity for smoothing for the estimated fill-in values for
Si as subsequent future observations become available. We
use the simple arithmetic average of such multiple estimates
as the smoothed estimate for the missing values of Si.

IV. EXPERIMENTAL EVALUATION

We identified 12 hours of vital sign data streams from a
TBI patient without any missing ICP values and less than
5% missing values for the heart rate (HR), systolic blood
pressure (SBP), mean BP (MBP), and CO2. The sampling
period for these vital sign variables is 6 seconds. Note that
there are five variables in our data stream. We constructed
a sequence of 30× 30 Hankel matrices, one matrix for each

sampling step using the sliding window method discussed
in the last section. 3 Note that each Hankel matrix contains
data spanning about 3 minutes. In determining the size of
Hankel matrices for experiments, we tested different sizes,
15 × 15, 30 × 30, and 60 × 60. We chose 30 × 30 Hankel
matrix since there is a noticeable improvement when going
from 15 to 30, but not from 30 to 60.

In using a sliding window, previously missing points may
become available after they have been estimated by the
matrix completion. When such entries enter into the next
newly constructed Hankel matrix, we can either treat them
as still being missing; or as being observed. The latter could
be useful if there is a long sequence of missing values
for one variable. Using the previously estimated values can
avoid the situation of constructing a matrix with a complete
row missing, which prevents the use of matrix completion
methods.

30 30 31 30 30 30 31 · · ·
78 81 77 75 78 80 75 · · ·
15 NA 12 NA NA 9 12 · · ·ICP

HR
CO2

one slice

⇓
15 NA 12 NA NA 9
78 81 77 75 78 80
30 30 31 30 30 30
NA 12 NA NA 9 12
81 77 75 78 80 75
30 31 30 30 30 31


Figure 1. Example Hankel matrix for a sequence of m = 3 vital signs
using a sliding window of size w = 7 (k = 2).

We conducted three experiments of missing values for a
single patient dataset, and one experiment for a 10 patients
dataset.

We compare our approach with three other commonly
techniques: the k-nearest neighbor for k = 1 and for k = 5,
and the regularized expectation maximization [19]. The k-
nearest neighbor is a simple yet effective data imputation
method, and is widely available in many statistical analysis
software packages. The expectation maximization (EM) al-
gorithm maximizes the likelihood and the information of the
missing data in the partially observed matrix. By penalizing
the likelihood with the mutual information between the
missing ones and the incomplete data, the Regularized EM
reduces the uncertainty of missing data [19]. For brevity,
hereafter we call our approach the MC approach.

We use the relative error and the normalized mean square
error (NMSE) to assess the performance of methods in

3We choose sliding windows instead of tumbling (non–overlapping)
windows when constructing our Hankel matrices, in order to have the
temporal neighbors of observations to be in the close–by columns and in
the same row of the Hankel matrix.



filling-in missing values. The NMSE is the mean square
error divided by the product of the means of the estimated
value and the true value for the missing values.

A. Rank of our Hankel matrices

We examine the rank of the Hankel matrices constructed
by our approach, since their rank is critical in the number of
missing values the matrix completion methods can tolerate
and still recover a unique Hankel matrix.

Almost all of our Hankel matrices are of full rank. We also
calculate the least k so that the sum of the largest k singular
values of a Hankel matrix is at least 95% of its nuclear norm.
Figure 2 shows that for most Hankel matrices, k is 10 or
less, while Figure 3 shows that the top 5 singular values
contain over 90% of the nuclear norm for almost all Hankel
matrices. This suggests that our Hankel matrices originate
from low rank matrices perturbed with some random noise.
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Figure 2. Histogram of the number of Hankel matrices whose top k
singular values sum to at least 95% of their nuclear norm, vs. k.
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Figure 3. Histogram of the number of Hankel matrices whose top 5
singular values sum to at least α of their nuclear norm, vs. α.

B. Detailed experimental evaluation

Experiment 1: missing ICP values for random sampling
steps. In this setting, 25% ICP data points are randomly
selected and flagged as missing, while other vital signs

remain unaffected. This situation happens when the devices
occasionally stop working and recover back to normal
immediately. A sequence of 30 × 30 Hankel matrices are
constructed and all missing values are estimated. If one
missing ICP value appears multiple times in the same
Hankel matrix, its final estimated value is calculated as the
arithmetic average of all its occurrences. 4

Table I
RELATIVE ERROR (RE) AND NMSE FOR MISSING VALUE FILL-IN

METHODS: OUR APPROACH(MC), k-NN (k = 1, 5), AND REGULAR
EXPECTATION MAXIMIZATION (REGEM).

Method Exp 1 Exp 2 Exp 3
RE NMSE RE NMSE RE NMSE

MC 16.44% 0.035 32.05% 0.149 18.70% 0.046
KNN1 23.98% 0.074 52.10% 0.368 NA NA
KNN5 20.93% 0.056 47.45% 0.295 NA NA
RegEM 19.90% 0.051 40.06% 0.214 20.75% 0.056

Figure 4 shows a scatter plot of the true vs. the estimated
value obtained from the four different fill-in methods. Points
closer to the y = x line indicate smaller difference between
estimated and true values.

First, we note that most often the estimates of our ap-
proach (red stars) are more accurate than those of the other
methods.

Second, we partition the range of ICP values into three
intervals with clinical importance: ICP values less than
20 mmHg (normal), ICP between 20 and 30 mmHg (high
pressure), and ICP greater than 30 mmHg (potentially lethal;
requires prompt corrective action). Clinical protocols for TBI
aim to keep ICP < 20 mmHg. Therefore should remain
low (< 20), otherwise necessary medical intervention will
be provided. Therefore, observations of ICP ≥ 20 mmHg
will be infrequent and even fewer will be ≥ 30 mmHg.
Figure 4 shows that our method still performs better than
other methods for the rare cases of high ICP values. Table I
shows that both the relative error and the NMSE of our
method is smaller than that of the other three methods.
Experiment 2: missing ICP values for random long
time periods. Instead of missing ICP values at random
sample steps, ICP values are flagged as missing in random
blocks of sampling steps. These non–overlapping blocks
consists have their total duration 25% of the duration of
the whole ICP stream, while each of them constitutes of
50 sampling steps and lasts span 5–minutes. Because the
length of this missing gap is longer than the dimension
of the Hankel matrix we construct, we may end with a
whole row of the Hankel matrix missing. If this happens,
the matrix completion method may work in an unexpected
way. To mitigate this problem, we use estimated values for

4After each completion on a Hankel matrix, all the estimates are stored
at different location for future analysis, instead of directly filling in the
vacuums. Hence, previously estimated values will not affect following
calculation.
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Figure 4. Scatter plot of performance of data imputation methods when
missing ICP values at random sampling steps.

missing values in previous sampling steps when constructing
the Hankel matrices for subsequent sampling steps.

Long duration of missing values lead to a deterioration
of performance for the fill-in methods. But the Bland-
Altman plots (Figure 6) show that our method provides
better estimates, more (Estimate − Real) clustering at 0,
and smaller standard deviation than other methods used.
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Figure 5. Scatter plot of performance of data imputation methods when
missing ICP values for random long time periods.

Experiment 3: missing values for any vital sign at
random sampling steps. In this experiment, a total 25%
of all vital sign values are selected uniformly at random
and are flagged as missing. This corresponds to common
situations in the clinical environment. Because the k–nearest
neighbor methods can not compute the distance between two
observations when they are missing values on more than one
variable, we only compare our approach with the regularized
EM method. Figure 7 shows that both methods have reason-
able performance, having their estimates crowded around
the line y = x. Table I also shows that our approach gives
smaller relative error and NMSE than the regularized EM
method.
Experiment 4: missing ICP values for random sampling
steps for a group of 10 patients. This experiment extends

Figure 6. Bland-Altman plots of performance of data imputation methods
when missing ICP values for random long time periods.

the population to 10 TBI patients (patients P1–P5 survived
and P6-P10 died in the hospital). Patient P1 is the same
patient used in experiments 1–3. A total of 160 hours
of vital signs data (96,000 sampling steps) with complete
ICP are identified and processed with the same parameter
settings as in experiment 1. In Figure 8, each cluster of bars
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Figure 7. Scatter plot of performance of data imputation methods when
missing values for any VS at random sampling steps.

represents the relative errors of the four methods for the
corresponding single patient. Table II summarizes the overall
relative error and NMSE for missing data estimated for all
10 patients. Despite different mortality outcomes and various
vital sign patterns, we observe that our approach always
outperforms the other fill-in methods. We also note that the
mortality outcome does not seem to affect the accuracy of
our approach.
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Figure 8. Performance of data imputation methods when missing ICP
values for random sampling steps for 10 patients.

Table II
OVERALL RELATIVE ERROR (RE) AND NMSE OF DATA IMPUTATION

METHODS WHEN MISSING ICP VALUES FOR RANDOM SAMPLING STEPS
FOR THE 10 PATIENT DATASET.

MC KNN1 KNN5 RegEM
RE 12.69% 18.42% 16.20% 15.48%
NMSE 0.019 0.041 0.032 0.029

C. Discussion

In simulating random missing data, we identified a single
subsection for each patient where all ICP measurements are
available and most of the rest vital signs are also available.
We selected 25% of data inside these selected segments,

either for only ICP or for all vital signs. In reality, non-
invasive vital signs (heart rate, blood pressure, etc.) are
available ≥ 98% of the time. Also due to the great effort of
the medical staff and the benefit of automated electronic
collection, ICP values are also available for rather long
periods of time for many patients. Among the 10 patient
we worked on, during the time period when ICP values
were recorded, actual mean availability of complete data
was ICP, 97.9%; HR, 98.2%; SBP, 96.6%; MBP, 96.6%; and
CO2, 30%. Thus, our hypothetical situation of 25% missing
data grossly exaggerates actual data loss in our clinical
data collection systems. However, this approach increases
confidence in the capabilities of the methods.

Our approach of online fill-in of missing values consumes
little CPU time. An Intel Core i5 2.67GHz CPU with 8.00GB
memory running the 64-bit Windows 7 operating system,
the Matlab 2012b implementation of our approach takes an
average of 30 seconds to process a 30×30 Hankel matrix and
do the fill-in, which is acceptable for real-time processing
for clinical use. The matrix completion routine is adapted
from the TFOCS package (Templates for First-Order Conic
Solvers) [15].

V. CONCLUDING REMARKS

Continuous, automated, electronic patient vital sign data
streams are important for clinical evaluation of the physio-
logic status of critical ill patients and the support of timely
therapeutic interventions. Appropriately collected, complete
vital signs sequences allow statistical and machine learning
software to uninterruptedly supply VS needed by physicians
for decision-making about therapeutic interventions. Such
support can maximize the potential for saving lives and
improving long-term clinical outcomes.

We proposed a novel method for the commonly en-
countered problem of missing values in vital signs data
streams. Our method builds a sequence of Hankel matrices
for the data stream, and utilizes recently developed matrix
completion methods.

We demonstrated that a few singular values are sufficient
to capture most of the nuclear norm of our Hankel matrices,
which suggests that they are might be low rank matrices
perturbed with high rank noise.

We compared our approach with commonly used data
imputation methods, k–nearest neighbors (k = 1, 5) and the
regularized EM method. We demonstrated that our approach
provides better estimates of missing values for important
vital signs variables like ICP than these other methods.

In future work, we plan to integrate our approach (as
a prepossessing step) with the method of [6] to forecast
near–term clinical outcomes, such as mortality and massive
blood transfusion needs. We also plan to study the impact
on the imputation performance of our approach of con-
structing Hankel matrices by including additional vital sign
data stream variables. Motivated by the fact that VS data



streams are contaminated by artifacts caused by unstably
attached sensors, or patient movement, we will use the robust
PCA method to simultaneously perform data imputation and
artifact removing.
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