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Abstract: 

Introduction: Recognizing the use of uncross-matched packed red blood cells (UnXRBC) or 

predicting need for massive transfusion (MT) in injured patients with hemorrhagic shock can be 

challenging. A validated predictive model could accelerate decision making regarding 

transfusion.  

Methods: Three transfusion outcomes were evaluated in adult trauma patients admitted to a level 

one trauma center over a four-year period (2009-2012): use of UnXRBC, use of  >4 units of 

packed red blood cells (PRBC) within 4 hours (MT1) and use of >=10 units of PRBC within 24 

hours (MT2). Vital Signs (VS) features including heart rate (HR), systolic blood pressure (SBP), 

and shock index (SI=HR/SBP) were calculated for 5, 10 and 15 minutes after admission. Five 

models were then constructed. Model 1 used preadmission VS, Model 2 used admission VS, 

Models 3, 4 and 5 used continuous VS features after admission over 5, 10 and 15 minutes, 

respectively to predict use of UnXRBC, MT1 and MT2. Models were evaluated for their 

predictive performance via area under the receiver operating characteristic curve (AUROC), 

positive predictive value (PPV), and negative predictive value (NPV). 

Results: Ten thousand six hundred and thirty six patients with over 5 million continuous VS data 

points during the first 15 minutes after admission were analyzed. Model using preadmission and 

admission VS had similar ability to predict UnXRBC, MT1 or MT2. Compared to these two 

models, predictive ability was significantly improved as duration of VS monitoring increased. 

Continuous VS for 5 minute had an ROC of 0.83 with confidence interval (CI) of 0.83-0.84, 

ROC of 0.85 (CI 0.84-0.86) and ROC of 0.86 (CI 0.85-0.88) to predict UnXRBC, MT1 and 

MT2, respectively. Similarly, continuous VS for 10 minutes had an ROC of 0.86 (CI 0.85-0.86), 
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0.87 (CI 0.86-0.88) and 0.88 (CI 0.87-0.90) to predict UnXRBC, MT1 and MT2, respectively. 

Continuous VS for 15 minutes achieved highest ROC of 0.87 (CI 0.87-0.88), 0.89 (CI 0.88-0.90) 

and 0.91 (CI 0.91-0.92) to predict UnXRBC, MT1 and MT2, respectively. 

Conclusion: Models using continuous VS collected after admission improve prediction for the 

use of UnXRBC or MT in patients with hemorrhagic shock. Decision models derived from 

automated continuous VS in comparison to single prehospital and admission VS identifies the 

use of emergency blood use and can direct earlier blood product administration, potentially 

saving lives. 

Level of Evidence: Level III 

Study type: Retrospective study 
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Introduction  

Hemorrhage as a result of injury is the most common cause of preventable death in both 

military and civilian setting (1). Out of the patients who survive to reach advanced care, half will 

die in the first 2 hours after admission (2). Despite the robust advances in trauma systems, 

mortality remains high in patients with trauma related hemorrhage. Given the high mortality of 

hemorrhagic shock after trauma, real time predictors are needed to discriminate those who 

require lifesaving interventions (LSI) such as blood transfusion.  
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To optimize triage or to plan early massive transfusion (MT), simple and fast scoring 

systems such as the Assessment of Blood Consumption (ABC) have been developed, which can 

be used in field during transportation and upon admission and have demonstrated good 

prediction performance (3). This scoring system has great advantage for field triage with limited 

vital signs (VS) monitor equipment. Clinicians can quickly calculate predictive scores using 

paper and pen for decision making. In most modern hospitals, VS are collected as high-quality, 

automated and continuous electronic data streams. The high fidelity data better preserve changes 

and trends of physiological conditions, compared with traditional manually documented VS. 

However, the high quality data is often underutilized due to the lack of prediction models built 

and verified in a large trauma population. Extending the one-time measurement to continuous 

monitoring and prediction may optimize decision making. Not all bleeding trauma patients 

present to the hospital with classic physical findings. Even if they do, they may be missed during 

the potentially chaotic initial stages of trauma resuscitation. The physical findings differ in 

various stages of shock and are often inaccurate until patients deteriorate to a state of 

decompensated shock (1, 4, 5). Therefore, it is necessary to create an automated decision support 

prediction using the rich data sources in hospital for early prediction of MT.  

Invasive monitoring and laboratory testing is time consuming and can cause delays in 

treatment (1). Point of care testing measurements can vary considerably between different 

laboratory devices in their ability to detect patients in hemorrhagic shock, and finger stick 

capillary blood samples are susceptible to wide differences compared to traditional laboratory 

measurements (1, 6).  Noninvasive predictors with the ability to rapidly and reliably identify 

patients with life-threatening hemorrhage are highly desirable during initial presentation to a 

trauma center (1). 
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We hypothesize that continuous noninvasive VS including heart rate (HR), systolic blood 

pressure (SBP) and shock index (SI= HR/SBP) in the first 15 minutes of admission can better 

predict blood transfusion compared to single VS (preadmission and admission). The aim of this 

study is to compare predictions of transfusion following trauma using non-invasive VS collected 

before and after trauma center admission to test this hypothesis. 

Methods 

Study setting and population 

The study was conducted at the R Adams Cowley Shock Trauma Center (STC) at the 

University of Maryland Medical Center. STC admits more than 5,000 trauma patients annually 

directly from the scene of injury. Of these patients, 5–8 % will require transfusion, and 2–3 % 

MT. Most transfusions occur within the first few hours of admission and often are started by 

administration of uncross-matched universal donor group O blood on an emergency basis (7-9). 

The study was approved by expedited review of Institutional Review Boards (IRB) from the 

University Of Maryland School of Medicine. 

Inclusion/Exclusion criteria 

Direct STC trauma patient admissions by helicopter or ambulance to the Trauma 

Resuscitation Unit (TRU) during the time period 1/2009 to 12/2012 were analyzed. Patients 

admitted in active cardiac arrest or dying within 15 min of trauma center arrival or those patients 

with missing VS (HR and SBP) or below age of 18 years were excluded from the study (Figure 

1). Missing data is a frequent problem in clinical data collection, especially in retrospective 

studies. In urgent, chaotic field or hospital environment, recording data is often given less 
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priority compared to LSI. Instable device connections during transportation or during 

resuscitative interventions increase the chance of missing data. 

Data collection 

Continuous VS data were collected via Bed Master software (Excel Medical Electronics, 

Jupiter, FL) in the 13-bay TRU from the networked patient monitors (GE-Marquette-Solar-

7000/8000, GE Healthcare, Little Chalfont, United Kingdom) using two VS data collection 

servers and one centralized VS data repository server. Numeric monitored trend values of HR 

(beats per minute) were collected every 2 seconds (0.5 Hz). If arterial blood pressure monitoring 

was available trend values were collected every 2 seconds, if not intermittent values of 

noninvasive BP (mmHg) were used as surrogate. Signal measurement of preadmission VS (Pre-

HR, Pre-SBP) and admission VS (Adm-HR, Adm-SBP) were obtained from trauma registry. The 

source of admission VS can be either from trauma registry or from the Bed Master. Since there is 

published data which used admission VS from the trauma registry to predict blood transfusion 

(10), we compared the proposed model to an existing model. 

PRBC usage was validated by cross-validation with blood bank records tracking 

individual PRBC product unit types and time of release from the blood bank. PRBC use was 

partitioned into post admission cohorts of uncrossed-matched (UnXRBC), massive transfusion 

category 1 (MT1) defined as more than 4 unit in 4 hours and massive transfusion category 2 

(MT2) defined as more than or equal to 10 unit in 24 hours. Patient demographics (age, gender), 

admission status (injury type, mechanism of injury) and outcomes (in hospital mortality) were 

obtained from trauma registry. In the state of Maryland, blood transfusion is not permitted during 

transportation and hence patients only receive blood after admission. At our institution, the 
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decision to transfuse a patient following trauma admission is taken by board certified critical care 

faculty and fellows. Positive focused assessment with sonography in trauma (FAST) exam, 

external signs of bleeding, physical exam findings, reports of excess blood loss at scene or 

during transportation, positive signs and symptoms of shock, operative and radiology findings 

and trending physiologic and laboratory values are taken into consideration when making a 

decision for blood transfusion. 

VS Data processing and analysis 

VS were analyzed and transfusion prediction models were developed at five clinical time 

frames: preadmission, admission, 5, 10 and 15 minutes after admission. The last three time 

frames were selected based on the need for early prediction and transfusion. The 15 minute time 

frame model was selected as this is optimal to assess the adequacy of the ongoing resuscitation 

initiated during transport or within minutes of admission. Data was pre-processed to remove 

extreme values (HR>250 bpm and SBP>300 mmHg). The VS features extracted from HR, SBP 

and SI included: mean, standard deviation (SD), median, dose of VS above and below 

thresholds, first, second and third quartiles. The VS features were used to quantify the shape of 

the distribution of VS values in 5, 10, and 15 minutes of observation. To capture the episodes of 

abnormal VS, the dose (area above or below certain critical thresholds) of VS and percentage of 

dose were also calculated. The thresholds used were HR>=120 bpm, SBP<=90 mmHg, and 

SI>=1.0.  

Two sample t-tests were used to examine the mean difference of VS at each time frame 

between the two groups that had or had not received UnXRBC, MT1 or MT2. The purpose of 

this test is two-folded. First, it could reveal some contrasting patterns between the two groups. 
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Second, it may provide initial evidence that the VS features can separate or predict the 

transfusion outcomes.   

Stepwise logistic regression model was used to learn the association between the 

outcomes (use of blood) and VS features. To investigate the performance of VS features of 

various durations in predicting the use of blood products, five multivariate logistic regression 

models were created, composed of the following VS features: pre-hospital values, admission 

values, continuous observation of VS for 5, 10, and 15 minutes duration (Table 1). Patients with 

missing manually captured VS (HR, SBP, SI) were excluded from the study. For the post 

admission continuous VS, patients who lacked VS for more than two thirds of the study time 

duration were also excluded (Figure 1).  

To avoid over-fitting, stepwise feature selection was used to build parsimonious models. 

The Wald Chi-square test was used to determine whether a variable should be included (forward 

step; p-value<0.05) or excluded (backward step; p-value>0.01). In the models that use 

prehospital or admission VS, the features were the actual measurement. In the models that use 

continuous VS, the raw measurements were transformed into single values via the summary 

statistics to simplify the models (Table 1).  Furthermore, 10-fold cross-validation repeated 10 

times with stratified sampling was used to verify the trained models’ prediction performance on 

new data (11). Area under the receiver operating characteristic curve (AUROC) was used as a 

performance metric. Sensitivity and specificity were calculated from the optimal threshold 

determined by the Youden index. Delong’s method was used to evaluate and compare the 

AUROC results for the five models with p<0.05 considered to be statistically significant (25). 
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AUROCs and their confidence intervals (CI) are reported for the testing sets which are a more 

accurate reflection of new patient performance than those of the training data sets.  

All statistical analysis, predictive model learning, and evaluation were implemented with R 

software version 3.1.1 (R Development Core Team, Vienna, Austria). Stepwise logistic 

regression used SAS 9.3 PROC LOGISTIC (SAS Institute Inc., Cary, NC).   

Results  

Of the 18,285 trauma patients admitted in 4 years, 10,636 patients met inclusion criteria 

(Figure 1). Patients were predominantly male (68%) with mean age of 42.9 ±19 years. 23% had 

Injury Severity Score (ISS) >=15. Among all patients 7.6 % received blood transfusion out of 

which 4.1%, 2.2% and 1.3% received UnXRBC, MT1 and MT2 respectively.  While the 

mortality for the cohort is 2.4%, the mortality in UnXRBC/MT1/MT2/any transfusion groups is 

23.6%, 33.9%, 40.9%, 29.59% respectively (Table 2). The injury-to-admission time was an 

average of 1 hour. Table 2 summarizes the characteristics of the analyzed patients. 

Patient demographics in groups who did or did not receive blood transfusion exhibit 

different patterns. The 1st, 2nd, and 3rd quartiles of ISS score, incidence of penetrating injury type 

and incidence of motor vehicle associated injury were higher in patients who received UnXRBC, 

MT1 and MT2 compared to patients who were not transfused, p <0.0001 (Table 3).  

The difference in SBP (mmHg), HR (beats per minute) and SI across the five time frames 

(preadmission, admission, 5, 10, 15 minutes continuous VS) were compared between the three 

transfusion groups. To better characterize those patients who received blood transfusions and 

those who did not, patients who received UnXRBC, MT1 and MT2 had higher HR, lower SBP, 
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and higher SI compared to patients who were not transfused as depicted in Figure 2. The 

difference in the mean VS between patients who received blood transfusion (UnXRBC, MT1 and 

MT2) and those who did not was calculated at each time frame using two-sample t-tests. All 

pairs were found to be statistically significant (p-values < 0.0001) with assumption of different 

variance between groups.  

For all five models built on VS features measured at each time frame, the AUROC in 

prediction of blood transfusion improves for the three outcome measures of interest; UnXRBC, 

MT1 and MT2, respectively. The model that uses single point measurement of admission VS did 

not significantly improve in comparison to the model using preadmission VS for predicting 

UnXRBC (ROC 0.80, CI 0.79-0.80 vs ROC 0.77, CI 0.76-0.78), MT1 (ROC 0.82, CI 0.81-0.83 

vs ROC 0.81, CI 0.80-0.81) or MT2 ( ROC 0.85, CI 0.83-0.86 vs ROC 0.82, CI 0.81-0.84). For 

predicting UnXRBC transfusion, continuous VS for 5 minutes model has better predictive value 

(ROC=0.83, CI 0.83-0.84) than preadmission VS and admission VS (ROC 0.76 and 0.78). 

Continuous VS for 10 minutes model has significantly improved predictive value (ROC of 0.85, 

CI 0.85-0.86) over preadmission, admission and continuous VS for 5 minutes models. 

Continuous VS for 15 minutes model has the best predictive value, compared to the rest of the 

models with ROC of 0.87 (CI 0.87-0.88). Similar pattern is appreciated for predicting MT1 by 

continuous VS for 15 minutes model which achieves ROC of 0.89 (CI 0.88-0.90). For predicting 

MT2 the ROC for continuous VS for 15 minutes model is 0.91( CI 0.91-0.92) and continuous VS 

for 10 minutes model is 0.88 (CI 0.87-0.90) which are statistically significantly better when 

compared to models using preadmission, admission and continuous VS for 5 minutes. 

Continuous VS for 15 minutes model has the greatest predictive value for all transfusion groups, 

with ROC of 0.87, 0.89 and 0.91 for the UnxRBC, MT1 and MT2 respectively (Table 4). 
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Supplemental Digital Content (SDC) 1-3 outlines the ROC comparison of all the models and 

their p values in predicting each transfusion outcome. The sensitivity, specificity, CI, positive 

predictive value (PPV) and negative predictive value (NPV) of the prediction models is depicted 

in Table 4. The NPV of all the five models (preadmission, admission, 5 minutes, 10 minutes, and 

15 minutes continuous VS) is between 0.98-0.99 for the three transfusion outcomes (UnXRBC, 

MT1 and MT2). Continuous VS for 15 minutes model has the greatest PPV for all transfusion 

groups, with PPV of 0.21, 0.15 and 0.11 for the UnxRBC, MT1 and MT2 respectively (Table 4). 

 

Discussion  

Model as rapid and noninvasive predictor of blood transfusion 

Automated continuous analysis of VS features collected for 15 minutes after hospital 

admission without additional user input can predict the use of UnXRBC and the use of MT early 

during resuscitation better than the current best predictors that use preadmission single point SI 

or HR alone (12). At present, SI is often used as baseline VS in emergency transfusion decision 

making (12-15). SI based on field VS has been shown to be correlated with transfusion, where SI 

of 0.9 to1.1 had a 1.5-fold increased risk (RR, 1.61; 95% CI, 1.13–2.31) for transfusion of 

greater than 10 U of red blood cells in 24 hours, the traditional definition of MT (16).  

 Predicting the need for massive transfusion in trauma patients is not a novel concept. The 

strengths and limitations of the multiple MT scoring systems have recently been reviewed by 

Shackelford et al (2). Beekley et al used tissue oxygen saturation (StO2), international 

normalized ratio (INR) and Hemoglobin (Hg) to predict MT with AUROC of 0.91 (27). 



 11 

 

Vandromme et al in 2010 studied the comparison between blood lactate levels obtained in the 

ED upon admission versus preadmission and admission SBP in predicting six or more units of 

PRBC within 24 hours of injury and demonstrated that serum lactate level was a better predictor 

of transfusion, as defined above, than VS (AUROC value 0.74 vs 0.6) (2).  The Trauma-

Associated Severe Hemorrhage (TASH) scoring system utilizes base excess (BE) and FAST 

exam in addition to other variables and the Traumatic Bleeding Severity Score (TBBS), by using 

ultrasound, pelvic radiograph and lactate level, can predict ongoing hemorrhage and transfusion 

after severe trauma with AROC of 0.91 and 0.98 respectively (1, 17, 18). These scoring systems 

require radiologic tools such as plain radiographs and computed tomography (CT) scan, and 

laboratory analyses such as hemoglobin, base excess, INR, and lactate, or non-standard monitors 

such as StO2 to make these predictions regarding hemorrhage and need for blood transfusion 

(12).  These variables require some amount of time and resources to obtain making them 

unavailable in the immediate period after admission. Additionally, they may not be available in 

most prehospital care or austere military environments. Our prediction model using 15-minute 

continuous VS data, which had an AUROC of 0.87 (CI 0.87-0.88) and PPV of 0.21 for 

prediction of uncrossed-matched transfusion and AUROC of 0.91 (CI 0.91-0.92) and PPV of 

0.11 for MT uses automatically-collected and processed HR, SBP and SI derived from 

conventional VS monitors without any user input, laboratory testing or imaging. In addition, it 

has the advantage of rapid prediction within 5- 15 minutes of admission.  

Nunez et al. and Cotton et al. developed the ABC score to predict MT. It involves four 

simple yes/no assessments available upon trauma center admission: penetrating mechanism of 

injury, SBP of 90 mm Hg or less, HR of 120 beats per minute or greater, and positive FAST 

findings. The predictive ability of this simple score has an AUROC between 0.83 and 0.90 (18) 



 12 

 

and a PPV of 0.55 (3, 19, 20). In the case of an equivocal FAST exam, inexperienced user or 

inter personnel variability objective VS trends can assist in decision making. In tertiary care 

trauma hospital, the proposed model can supplement other predictors and in regions with limited 

resources the model can replace other predictors. 

Significance of continuous automated monitoring, big data approach 

The resuscitation period is a notoriously difficult one to make assessments of clinical 

performance because the need for emergency treatment clearly takes priority over the 

requirement for documentation (21). In a study of 177 patients by Hu et al significant differences 

were observed between the highest and lowest HR, SBP, and pulse oximeter from the vital signs 

data recorder (VSDR) and the manually recorded trauma registry data (p< 0.001). If applied to 

the pre-hospital environment, real-time continuous VS monitoring and data acquisition can 

identify dynamic prehospital changes, which may be missed compared with VS recorded 

manually (22). 

The traditional scoring systems for prediction of blood transfusion use limited vital sign 

features and have an advantage of easy calculation. With the prolific advances in medical sensor 

technology, the volume of real time physiological patient data has exponentially increased. 

However, it is a challenge to collect and interpret data from multiple sources and formats. Using 

small sized noninvasive data sensors and reliable collection techniques, fractional information 

from heterogeneous data sources can be assembled in a real time fashion and applied for clinical 

care (23).  The proposed blood transfusion prediction model which used about 5 million VS data 

points, promotes the idea of automated monitoring and automated prediction, as part of future 

autonomous resuscitation. 
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Model as triage and decision assist predictor of blood transfusion 

In a recent meta-analysis of US trauma centers, average time from injury to presentation 

in the hospital were in excess of 30 minutes for road ambulances and over 60 minutes for 

helicopter transports (24). This time encompasses the “golden hour” of trauma resuscitation 

during which standard physical examination, expert opinion and point of care testing may not be 

available (13, 22). In the state of Maryland the emergency medical services (EMS) protocol 

allows the use of only crystalloids as bolus or maintenance therapy for resuscitation during 

transport. Whole blood or blood products are not carried on the helicopters or ground EMS (17) 

and FAST is not performed. Although the current study was focused on VS obtained 

immediately upon admission, this methodology can be easily applied to the prehospital 

environment. VS prediction models can help first responders to triage injured patients, initiate 

appropriate resuscitation to maintain physiologic stability until arrival at definitive care, alert the 

receiving trauma center regarding the critical nature of the patient and thereby help allocate 

resources, including blood products (12). New studies are in effect at University of Maryland to 

validate the model in the prehospital setting.  

 Recent studies recommended that quality improvement measures and computer 

modelling-based decision-support could reduce errors of LSI commission and omission found 

during resuscitation at major trauma centers and enhance decision-making in austere 

trauma settings by less well-trained providers (26).  Equipping the prehospital personnel with an 

objective assessment tool will empower decisions to identify and start resuscitative measures to 

manage hemorrhagic shock in the critical first minutes to hours after injury.  
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Given the high negative predictive value, proposed blood transfusion prediction models 

may help identify low risk populations in the prehospital setting and avoid over triage. This 

could reduce the burden of admissions to level 1 trauma centers, the implications of which will 

be significant in times of military conflicts, mass casualties, or in other settings of limited 

resources. 

Medical errors, especially during the initial minutes of patient reception and resuscitation 

occur because of time pressure, varying levels of experience, reliance on memory, multitasking, 

and failures in trauma team coordination (21).  Human variables that confound a standardized 

environment and lead to avoidable errors have been addressed by industries using immediate 

feedback by computer prompts. Implementation of such support is deficient in medical practice. 

A randomized, controlled interventional study that evaluated the effect of real-time, computer-

prompted, evidence-based decision and action algorithms on error occurrence during initial 

resuscitation  showed that a critical decision was required every 72 seconds, and error-free 

resuscitations increased from 16.0% to 21.8% (p = 0.049) during the first 30 minutes of 

resuscitation. Morbidity from shock management (p =0.03), blood use p <0.001), and aspiration 

pneumonia (p =0.046) were also decreased with the use of computer-prompted evidence-based 

decision and action algorithms (21). The advocated study models using continuous automated 

VS can easily be incorporated into computer modelling-based decision-support tools to decrease 

the number of avoidable blood transfusion and medical errors. 

Early versus accurate prediction 

 Patients with overt signs of bleeding and those in cardiac arrest after injury will be 

emergently transfused based on clinical judgement alone. In such scenarios clinical judgement 
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surpasses all predictors. Patients who present in compensated shock, with masked internal 

bleeding, atypical physical exam and polytrauma patients are in the grey zone and could benefit 

from transfusion predictors. Although trained trauma surgeons can trigger lifesaving 

interventions within 5 minutes, not all physicians who intermittently care for a trauma patient in 

rural or community hospitals have the exposure and training to do so. Fifteen minutes timeframe 

is a fine balance between early prediction and time to assess ongoing resuscitation. Taking into 

consideration adverse effects of unnecessary blood transfusion, a model that can rapidly yet 

accurately predict transfusion is preferred. Although early prediction within 5 minutes with the 

least amount of data would be ideal, the study results support 15 minutes time frame as it has 

better predictive power. The 15 minutes VS data predicted UnXRBC and PRBC use in 4 hours 

and 24 hours post admission. Compared to this long prediction horizon, 15-minute is a relatively 

short time period and can still be useful. Even during the 15-minute measurement, all necessary 

interventions can continue. Also, prediction based on continuous monitoring can quickly 

discover a developing situation and may facilitate change of clinical decisions. Therefore, it is 

necessary to build models that use continuous measured data for automated decision support. 

Limitations 

This study is limited by a number of factors. First, this is a single institution study 

therefore the patient demographics, injury pattern, and transfusion practices may not be entirely 

generalizable to other populations. Additionally, only 23% of the patient population had injury 

severity score >= 15 leading to very low PPV. Non-invasive blood pressure (NIBP) which is 

typically utilized in the field and first minutes of resuscitation is intermittent and prone to great 

variability due to the size of the cuff, device employed, and frequency of cycling. Because the 
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study is retrospective, each model did not predict the need for blood transfusion but instead 

predict use of transfusion following trauma. Also, all or any of the resuscitative efforts can affect 

the VS trends leading to competing risk and intervention bias. In addition, due to the limitation 

of regression model, significant quantities of missing values render the current models inaccurate 

or unreliable. During  rapid resuscitative period or during travel of the patient without 

monitoring to the operating room or imaging suites, stable and high quality VS recording still 

remains a challenge. Therefore, future models should consider other algorithms that are more 

tolerant to missing values, such as decision trees, or Bayesian models. In addition, this study has 

all the limitations of a retrospective observational study in which interventions were already 

performed without any reflection on the reasoning leading to the intervention. Since the decision 

to transfuse was made by trained trauma surgeons at our institution we have not challenged the 

use of the blood products. Models and the feature selection were calibrated for specific blood 

transfusion outcome. Blood products are not administered during transportation in state of 

Maryland and hence patient receives blood only after admission. Since blood bank data are 

reliable the study was focused on transfusion outcome.  Models to predict other intervention like 

intravenous fluid (IVF) usage were not examined. The timing and amount of IVF resuscitation 

en route is not well documented in the trauma registry making a retrospective analysis difficult.  

Conclusion 

Despite the limitations, the study has high statistical power, narrow confidence intervals 

and significance in predicting transfusion based on noninvasive continuous VS monitoring. In 

the cohort studied, continuous vital signs collected at 2 second intervals for 15 minutes by 

noninvasive vital sign devices can rapidly and accurately predict the use of blood transfusion in 
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trauma patients without user input. The performance of the model could support triage and 

resuscitation decisions by prehospital providers and the trauma team as well as blood bank 

preparations upon arrival to the hospital.  
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Figure 1. Flow diagram for patient enrollment and analysis. (* Models require atleast one third of 

vital signs observation) 
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Figure 2. Line graph illustration of mean and standard deviation

systolic blood pressure (mmHg), and 

positive (red) groups for uncross-

transfusion (MT)  category 1 and 2 

minutes. Differences in the mean VS between positive and negative groups for UnXRBC, MT1 

and MT2 are statistically significant (p

 

 

 

 

 

 

 

 

 

 

graph illustration of mean and standard deviation of heart rate (beats per minute), 

(mmHg), and shock index differences between negative (blue) and 

-matched packed red blood cells (UnXRBC) , massive 

category 1 and 2 at time frames of preadmission, admission, 5, 10, and 15 

minutes. Differences in the mean VS between positive and negative groups for UnXRBC, MT1 

and MT2 are statistically significant (p-values < 0.0001) 
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(beats per minute), 
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minutes. Differences in the mean VS between positive and negative groups for UnXRBC, MT1 
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Table 1: Model definition and vital signs data requirement 

Model Name Features  

Model 1 Preadmission Prehospital Heart rate (HR), Systolic blood pressure (SBP) and Shock 
index (SI) 

Model 2 Admission Admission Heart rate, Systolic blood pressure and Shock index 

Model 3 5-min Continuous VS (Heart rate, Systolic blood pressure and Shock index) 
for 5 minutes. Features include mean, SD, quartiles, dose, % dose, for 
HR>=120, SBP <=90, SI >=1 

Model 4 10-min Continuous VS (Heart rate, Systolic blood pressure and Shock index) 
for 10 minutes. Features include mean, SD, quartiles, dose, % dose, 
for HR>=120, SBP <=90, SI >=1 

Model 5 15-min Continuous VS (Heart rate, Systolic blood pressure and Shock index) 
for 15 minutes. Features include mean, SD, quartiles, dose, % dose, 
for HR>=120, SBP <=90, SI >=1 
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Table 2. Characteristics of analyzed patients and mortality rates in the Uncross-matched packed 
red blood cells (UnXRBC), Massive transfusion (MT) 1 and MT 2 groups. 

 

Characteristic Analyzed 
Total cases 10636 
Mean age, yr (SD) 42.9 (19.3) 
ISS Score, n (%) 
   ISS >=15 
   ISS <15  
   ISS not available  

 
2447 (23.0) 
7836 (73.7) 
353 (3.3) 

Sex, n (%)  
   Male 7254 (68.2) 
   Female 3382 (31.8) 
Injury type, n (%)  
   Blunt 9352 (87.9) 
   Penetrating 1062 (10.0) 
   Other 222 (2.1) 
Mechanism of injury, n (%)  
   Motor vehicle associated 5307 (49.9) 
   Falls 2770 (26.0) 
   Interpersonal violence 1158 (10.9) 
   Other 1397 (13.1) 
   Undocumented 4 (0.04) 
Outcome, n (%)  
   UnXRBC 433 (4.1) 
   MT1 236 (2.2) 
   MT2 142 (1.3) 
   Mortality, n (%) 
Mortality in transfused group    
   UnXRBC 
   MT1 
   MT2 
   Any transfusion 
 

259 (2.4) 
 
103 (23.6) 
79 (33.9) 
59 (40.9) 
114 (29.59) 
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Table 3. Demographic comparison of groups by Uncross-matched packed red blood cells 

(UnXRBC), Massive transfusion (MT) category 1 and 2. 

Characteristic UnXRBC 
 

MT1 
 

MT2 
 

 No Yes No Yes No Yes 
N (%) 10193(95.9) 433 (4.1) 10400(97.8) 236 (2.2) 10494(98.7) 142 (1.3) 
Injury severity score 
(1st,2nd,3rd quartile) 

4, 5, 14 17, 29, 41 4, 5, 14 25, 34, 45 4, 5, 14 26, 35, 49 

Injury type, n (%)       
   Blunt 9042 (88.6) 310 (71.6) 9183 (88.3) 169 (71.6) 9247 (88.1) 105 

(73.9) 
   Penetrating 947 (9.3) 115 (26.6) 1000 (9.6) 62 (26.3) 1028 (9.8) 34 (23.9) 
   Other 214 (2.1) 8 (1.9) 217 (2.1) 5 (2.1) 219 (2.1) 3 (2.1) 
Mechanism of injury, n 
(%) 

      

   Motor vehicle 5053 (49.5) 254 (58.7) 5160 (49.6) 147 (62.3) 5210 (49.7) 97 (68.3) 
   Falls 2730 (26.8) 40 (9.2) 2757 (26.5) 13 (5.5) 2767 (26.4) 3 (2.1) 
   Interpersonal violence 1059 (10.4) 99 (22.9) 1107 (10.6) 51 (21.6) 1128 (10.8) 30 (21.1) 
   Other 1357 (13.3) 40 (9.2) 1372 (13.2) 25 (10.6) 1385 (13.2) 12 (8.5) 
   Undocumented 4 (0.04) 0 (0.0) 4 (0.04) 0 (0.0) 4 (0.04) 0 (0.0) 
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Table 4. Receiver operating characteristic curve (ROC), 95% CI, Sensitivity, Specificity, 
Positive predictive value (PPV) and Negative predictive value (NPV) for Models 1-5 ; 
preadmission vital signs (VS), admission VS, 5 min , 10 min, 15 min continuous VS respectively  
. 
 

Outcomes Model ROC 95% CI Sensitivity Specificity PPV NPV 
Uncross-
matched 
packed red 
blood cells 

(UnXRBC) 

Preadmission VS 0.77 0.76-0.78 0.68 0.82 0.14 0.98 
Admission VS 0.80 0.79-0.80 0.67 0.86 0.19 0.98 
5-min VS 0.83 0.83-0.84 0.73 0.85 0.18 0.99 
10-min VS 0.86 0.85-0.86 0.76 0.86 0.21 0.99 
15-min VS 0.87 0.87-0.88 0.79 0.85 0.21 0.99 

Massive 
transfusion1 

 Preadmission VS 0.81 0.80-0.81 0.72 0.84 0.10 0.99 
 Admission VS 0.82 0.81-0.83 0.71 0.87 0.13 0.99 
 5-min VS 0.85 0.84-0.86 0.78 0.85 0.12 0.99 
 10-min VS 0.87 0.86-0.88 0.80 0.87 0.14 0.99 
 15-min VS 0.89 0.88-0.90 0.82 0.87 0.15 0.99 

Massive 
transfusion2 

 

 Preadmission VS 0.82 0.81-0.84 0.77 0.83 0.07 0.99 
 Admission VS 0.85 0.83-0.86 0.77 0.87 0.10 0.99 
 5-min VS 0.86 0.85-0.88 0.83 0.85 0.08 0.99 
10 min VS 0.88 0.87-0.90 0.83 0.88 0.10 0.99 

 15-min VS 0.91 0.91-0.92 0.87 0.89 0.11 0.99 
CI = confidence interval; ROC = receiver operating characteristic curve; PPV: positive 
predictive value; NPV: negative predictive value. 
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SCD 1. p values for ROC comparison of models 1-5 in predicting uncross-matched packed red 
blood cells 

  
Admission VS 

 5-min VS  10-min VS  15-min VS 

 Preadmission VS 0.0900 1.69E-05 4.49E-10 1.35E-14 
 Admission VS  1.18E-07 1.75E-12 6.12E-15 
 5-min VS   6.12E-05 9.30E-08 
 10-min VS    0.0005 
VS, vital signs 

 

 

SDC 2. p values for receiver operating characteristic curve (ROC) comparison of models 1-5 in 
predicting massive transfusion 1 

  Admission VS  5-min VS  10-min VS  15-min VS 
 Preadmission VS 0.3743 0.0108 6.86E-05 5.82E-07 
 Admission VS  0.0004 5.42E-08 1.87E-09 
 5-min VS   0.0023 0.0001 
 10-min VS    0.0224 
VS, vital signs 

 

 

SDC 3. p values for receiver operating characteristic curve (ROC) comparison of models 1-5 in 
predicting massive transfusion 2 

  Admission VS  5-min VS  10-min VS  15-min VS 
 Preadmission VS 0.3567 0.0540 0.0017 3.35E-06 
 Admission VS  0.0224 2.45E-05 2.74E-06 
 5-min VS   0.0052 5.68E-05 
 10-min VS    0.0042 
VS, vital signs 
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