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Comparison of massive and emergency transfusion prediction
scoring systems after trauma with a new Bleeding Risk Index score
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ssessment of blood consumption (ABC), shock index (SI), and Revised Trauma Score (RTS) are used to estimate the need for
blood transfusion and triage.We compared Bleeding Risk Index (BRI) score calculated with trauma patient noninvasive vital signs
and hypothesized that prehospital BRI has better performance compared with ABC, RTS, and SI for predicting the need for emer-
gent and massive transfusion (MT).
METHODS: W
e analyzed 2-year in-flight data from adult trauma patients transported directly to a Level I trauma center via helicopter. The BRI
scores 0 to 1 were derived from continuous features of photoplethymographic and electrocardiographic waveforms, oximetry
values, blood pressure trends. The ABC, RTS, and SI were calculated using admission data. The area under the receiver operating
characteristic curve (AUROC)with 95% confidence interval (CI) was calculated for predictions of critical administration threshold
(CAT, ≥3 units of blood in the first hour) or MT (≥10 units of blood in the first 24 hours). DeLong’s method was used to compare
AUROCs for different scoring systems. p < 0.05 was considered statistically significant.
RESULTS: A
mong 1,396 patients, age was 46.5 ± 20.1 years (SD), 67.1% were male. The MT rate was 3.2% and CAT was 7.6%, most
(92.8%) were blunt injury. Mortality was 6.6%. Scene arrival to hospital time was 35.3 ± (10.5) minutes. The BRI prediction of
MTwith AUROC 0.92 (95% CI, 0.89–0.95) was significantly better than ABC, SI, or RTS (AUROCs = 0.80, 0.83, 0.78, respec-
tively; 95% CIs 0.73–0.87, 0.76–0.90, 0.71–0.85, respectively). The BRI prediction of CAT had an AUROC of 0.91 (95% CI,
0.86–0.94), which was significantly better than ABC (AUROC, 077; 95% CI, 0.73–0.82) or RTS (AUROC, 0.79; 95% CI,
0.74–0.83) and better than SI (AUROC, 0.85; 95% CI, 0.80–0.89). The BRI score threshold for optimal prediction of CATwas
0.25 and for MTwas 0.28.
CONCLUSION: T
he autonomous continuous noninvasive patient vital signs–based BRI score performs better than ABC, RTS, and SI predictions
of MT and CAT. Bleeding Risk Index does not require additional data entry or expert interpretation. (J Trauma Acute Care Surg.
2021;90: 268–273. Copyright © 2021 American Association for the Surgery of Trauma.)
LEVEL OF EVIDENCE: P
rognostic test, level III.
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algorithms.
F ollowing trauma, early recognition of hemorrhage could in-
crease accuracy of field triage, expedite interventions to control

bleeding and minimize death from exsanguination during the
“golden hour.”1,2 Objectives underlying the concept of the “golden
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hour of momentary pause in the act of death” of simultaneous
treatment and diagnosis include early identification of patient
triage acuity, resources needed, and rapid transport to the most
appropriate nearest treatment facility. Scoring systems, such as
the Assessment of Blood Consumption (ABC),3 Revised Trauma
Score (RTS),4 and shock index (SI = heart rate [HR]/systolic
blood pressure),5–7 have been used to estimate the need for emer-
gency blood transfusion and triage. Our previous research efforts
for early detection of hemorrhage in trauma patients focused on
determining the probability of future transfusion during the first
hours after trauma center admission. Real-time capture of a
combination of continuous noninvasive patient vital signs, with
development of real-time computer algorithms were used to pre-
dict the need for blood transfusion and other interventions after
trauma center admission. Our Bleeding Risk Index (BRI) algo-
rithms, based on the autonomous analysis of any combination
of available continuous photoplethysmographic (PPG), and/or
electrocardiogram (ECG) waveforms, pulse oximetry and blood
pressure (BP) signals predicted blood transfusion within 6 hours
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of hospital admission with area under the receiver operating curve
(AUROC) of 0.92 in severely injured trauma patients.8–11 We
hypothesized that BRI, derived from noninvasive vital signs col-
lected in-flight, would have better performance compared with
ABC, RTS, and SI in predicting emergent and massive transfu-
sion (MT), during transport by helicopter from the scene of in-
jury, to the University of Maryland, R Adams Cowley Shock
Trauma Center (STC).
METHODS

After Institutional Review Board approval of a waiver of
informed consent, continuous vital signs signals were collected
at the scene and during helicopter transport of trauma patients
directly to the STC. Vital signs data collected at the scene and
in-flight from adult trauma patients were downloaded from pa-
tient physiological monitors (Propaq MD Series) during the pe-
riod January 2016 to December 2017. Records of helicopter
transportation details were obtained from the Maryland Institute
for EmergencyMedical Services Systems, including Emergency
Medical Services dispatch time, scene helicopter arrival time, ar-
rival (in STC) time, and unique helicopter number. The prehospital
vital signs collected included PPG and ECG waveforms, HR
(bpm), percutaneous oxygen saturation (SpO2%), noninvasive
cuff BP (in mm Hg), and respiratory rate (RR per minute).

Outcomes
Demographic data, such as age, sex, mechanism and type

of injury, Glasgow Coma Scale (GCS) score, Injury Severity
Score, and numbers of units of blood transfused hourly, were ob-
tained from the TraumaRegistry and were linked to each patient’s
helicopter physiologic data by matching helicopter number, ar-
rival time at STC with trauma resuscitation unit (TRU) bed re-
ception number, vital signs data collection during on-going
resuscitation and blood administration. Blood usage data in-
cluded number of units of packed red blood cells (pRBCs) and
time of transfusion were documented in comparison to blood
bank and clinical records. We evaluated the ABC, SI, and RTS
scoring systems’ transfusion and triage predictions compared
with those of our BRI algorithm to identify trauma patients ad-
ministered MT, defined as 10 units or greater pRBC12 in first
24 hours and critical administration threshold (CAT), defined
as 3 units or greater pRBC in the first hour13 after STC admis-
sion. The predictions for patient transfusion less than CAT and
MT quantities of blood were not reported, as these were either
captured within the definition of MT or were not considered
life-threatening. Primary outcomes were AUROCs comparing
ABC, SI, RTS, and BRI for predicting CAT and MT.

The BRI Score
The BRI score is derived from an algorithm developed as

a result of previously reported studies in which the algorithm
was independently trained and tested8,11 using pre-2016 patient
data obtained from the first 15minutes of trauma admission con-
tinuous vital signs. The BRI score is continuous ranging from 0
to 1, with higher score corresponding to higher probability of re-
ceiving CAT or MT. The BRI scores were calculated based on
features derived from PPG and ECG waveforms11 (both captured
at 250 Hz) continuously collected at the scene and during
© 2021 American Association for the Surgery of Trauma.
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prehospital helicopter transport, including oximetry SpO2 numeric
values and systolic BP trends (captured at 1 Hz). For the
high-fidelity PPG and ECG waveforms, data were preprocessed
by removal of signal artifacts before extraction of features used
in the transfusion prediction models as previously reported.8–11

In this study, we applied the BRI model to prehospital data,
and evaluated its prediction performance for in-hospital CAT
and MToutcomes. The initial 5 minutes, 10 minutes, and entire
prehospital data were used as input to calculate BRI score.

Other Predictions of Triage and Transfusion
We compared existing scoring systems for early identifi-

cation of uncontrolled hemorrhage and triage and found ABC,
SI, and RTS had the best combination of prediction and utility.12

The ABC score3 is a scoring system for MT, which assigns a
score from 0 to 4 based on the following questions: (a) Is it the
mechanism of injury penetrating? (b) Is the prehospital systolic
BP 90 mm Hg or less? (c) Is the prehospital HR 120 bpm or
greater? (d) Is the ultrasound Focused Assessment with Sonog-
raphy for Trauma (FAST) examination positive? The RTS4 is
used for field triage and in-hospital survival prediction for trauma
patients. A higher RTS is associated with increased survival. It is
also used as a prediction tool for massisve transfusion.14 Revised
Trauma Score requires collection of GCS score,15 SBP, and
RR. Categorical values from 0 to 4 are assigned according to
predefined ranges. The RTS is calculated as a linear combination
of those categorized values. The SI (SI = HR / SBP) is widely
used for prediction of transfusion and field triage in trauma pa-
tients because of the simplicity of calculation. In this study,
ABC, SI, and RTS were calculated using STC admission data.

Inclusion and Exclusion Criteria
Patients were included if they met the following inclusion

criteria: Direct trauma admission, 18 years or older, and transported
by Maryland State Police helicopters from the scene of injury to
STC with continuous vital signs collected available for this study.

Patients were excluded if they were trauma patients who
died within 15 minutes of STC admission.

Statistical Analysis
The AUROC with 95% confidence interval (CI)16 was

calculated for predictions of CAT and MT. DeLong method
was used to compare AUROCs for different scoring systems.
A p value less than 0.05 was considered to be statistically signifi-
cant. Other performancemetrics based on thresholds thatmaximize
the Youden Index17,18 are reported, including sensitivity (true posi-
tive rate [TPR]), specificity (true negative rate [TNR]), positive
predictive values (PPVs), and negative predictive values (NPVs).

RESULTS

Among 1,396 trauma patient data collected during trans-
portation by the Maryland State Police helicopters, median pa-
tient age was 45 years (first and third quartiles of 28.8 and
60 years). There were 67.1% male patients. Table 1 summarizes
the patient demographics and prevalence of positive outcomes.
The MT rate was 3.2%, and the CATwas 7.6%. Overall mortal-
ity rate was 6.6%. Among all patients 92.8% sustained blunt
trauma, 5.0% penetrating trauma, and 1.4% were other injury
types. Injury Severity Score had first, second, and third quartiles
269

ealth, Inc. All rights reserved.



TABLE 1. Patient Demographics

N 1,396

Age (1st, 2nd, 3rd quartiles) 28.8, 45, 60 y

Sex Male, 67.1%; Female, 32.9%

Adm GCS (1st, 2nd, 3rd quartiles) 14, 15, 15

Injury Severity Score (1st, 2nd, 3rd quartiles) 5, 10, 17

PreHospital time (at the scene to hospital arrival) Mode: 29.4 min. Mean (SD):
35.3 ± 10.5 min

Mechanism of injury

Blunt 1,295 (92.8%)

Penetrating 70 (5.0%)

Blunt and penetrating 12 (0.8%)

Other 19 (1.4%)

Transfusion and mortality outcomes

CAT 106 (7.6%)

MT 45 (3.2%)

Mortality 92 (6.6%)

Adm, admission; SD, standard deviation.

TABLE 3. Performance Metrics for Predicting MT

AUROC 95% CI FPR TPR FNR TNR PPV NPV

BRI preHAll 0.92 0.89–0.95 0.15 0.87 0.13 0.85 0.16 0.99

ABC 0.8* 0.73–0.87 0.19 0.76 0.24 0.81 0.12 0.99

SI 0.83* 0.76–0.90 0.14 0.74 0.26 0.86 0.14 0.99

RTS 0.78* 0.71–0.85 0.31 0.78 0.22 0.69 0.08 0.99
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of 5, 10, and 17, respectively. Average prehospital time (scene
arrival to hospital) was 35.3 ± 10.5 minutes with a mode of
29.4 minutes (Fig. S1, http://links.lww.com/TA/B857).

Bleeding Risk Index and other three score’s prediction,
including AUROCs, 95% CI ranges, and AUROC comparison
p values for CAT and MT, are shown in Tables 2 and 3, respec-
tively. The first 5 minutes, 10 minutes, and all prehospital bar
graphs with CIs of AUROC for BRI show progressively more
robust and better predictions of CAT (Fig. S2, http://links.lww.
com/TA/B857) and MT (Fig. S3, http://links.lww.com/TA/
B857) as over time more vital signs data accumulate. The BRI
prediction forMT, using entire prehospital data, performs signif-
icantly better than ABC, SI, and RTS. For prediction of MT,
AUC for BRI was 0.92 (95% CI, 0.89–0.95), which was signifi-
cantly better than the ABC (AUROC, 0.80; 95% CI, 0.73–0.87),
the SI (AUROC, 0.83; 95% CI, 0.76–0.90), and the RTS
(AUROC, 0.78; 95% CI, 0.71–0.85). For predicting CAT, BRI
(AUROC, 0.91; 95% CI, 0.86–0.94) was significantly better
than ABC (AUROC, 0.77; 95%CI, 0.73–0.82) or RTS (AUROC,
0.79; 95%CI, 0.74–0.83) and better than SI (AUROC, 0.85; 95%
CI, 0.80–0.89). The receiver operating curves (ROCs) in Figure 1
show that the BRI performs better than other scoring systems,
since its ROC dominates the others. Figure 2 shows the sensitivity
(blue) and specificity (orange) for CAT and MT given any BRI
score threshold. With the threshold cutoff BRI of 0.25 that
TABLE 2. Performance Metrics for Predicting CAT

AUROC 95% CI FPR TPR FNR TNR PPV NPV

BRI preHAll 0.91 0.86–0.94 0.15 0.83 0.17 0.85 0.31 0.98

ABC 0.77* 0.73–0.82 0.17 0.69 0.31 0.83 0.25 0.97

SI 0.85 0.80–0.89 0.12 0.73 0.27 0.88 0.32 0.98

RTS 0.78* 0.74–0.83 0.28 0.77 0.23 0.72 0.18 0.97

*Mean AUROC is significantly different from BRI’s.
BRI algorithm uses data from the entire prehospital transportation.
preHAll, entire prehospital data.
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maximizes the Youden Index for CAT, the sensitivity was 0.83
and specificity was 0.85. For MT, at a cutoff of BRI of 0.28, the
sensitivity was 0.85 and specificity was 0.82. The FPR, TPR,
FNR, TNR, PPV, NPV are reported in Tables 2 and 3. Different
thresholds could be used for BRI, if alternative sensitivity or spec-
ificity was needed. Figure 2 illustrates the change of sensitivity
and specificity for different BRI thresholds.

DISCUSSION

The BRI, using continuously recorded noninvasive vital
signs in trauma patients, is an algorithm for predicting the prob-
ability of transfusion in both prehospital and early in-hospital
use.8–11 The current study shows that the same BRI algorithm
performs well (AUROC, 0.91–0.92) using prehospital data to
predict emergency andMTas it did when used on a different data
set for in-hospital prediction of transfusion (AUROC, 0.92).9 In
a previously reported study, BRI used after trauma center arrival,
performed as well or better than STC trauma attending faculty,
senior nurses, and helicopter paramedics at predicting future
blood transfusion.9 Bleeding Risk Index requires no user input
from a busy prehospital provider who may be involved with
multiple interventions (airway management, intravascular cathe-
ter insertion, monitoring vital signs, etc.), history taking, and
documentation. Use of BRI does not require additional equipment,
data entry or expert interpretation. Data collection is automated by
interfacing with the vital signs data and the hemodynamic monitor-
ing system and shows the probability of future transfusion. Auto-
mated transfusion prediction with machine learning and artificial
intelligence using BRImay assist prehospital triage decisionmak-
ing, and can also assist with prehospital, trauma center and
blood-bank planning. Bleeding Risk Index might be especially
useful in remote field or natural disaster scenes, and BRI could
be used when availability of medical expertise is limited. Bleed-
ing Risk Index also has applicability as a monitor of the proba-
bility of future transfusion because BRI score can be continuously
updated in real-time. Together with history, physical examination
and emergency medical services protocols, BRI can add to the ac-
curacy of decision making and assist with patient triage. In prag-
matic decision making, the threshold could be fine-tuned for the
preference of higher sensitivity or specificity as needed by other
longer-term priorities, such as delayed transportation.

The transfusion prediction scoring systems compared in
this study are all feasible to be used in the field, as all measure-
ment and calculation devices could be mobile and small. A por-
table ultrasound device would allow use of ABC in the field.
Derivation of ABC and RTS requires additional expertise to
carry out a FAST examination (for calculation of ABC3) and to
collect and enter a GCS (for calculation of RTS4). Bleeding Risk
Index and SI do not require manual evaluation and are suitable
© 2021 American Association for the Surgery of Trauma.
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Figure 1. ROCs (left: CAT. Right: MT for the ABC (blue), SI (light green), RTS (light blue), BRI (light orange for using data from
prehospital first 5 minutes, orange for using data from prehospital first 10 minutes, red for using data from entire prehospital).

J Trauma Acute Care Surg
Volume 90, Number 2 Yang et al.
for autonomous continuous monitoring. However, BRI and SI
do not use information frommedical experts when FASTexamina-
tion results or GCS are available. Therefore, the quest for a more
accurate and easy-to-use transfusion predictor should continue.

Blood and/or plasma is not routinely administered in the
Maryland State Police helicopters, though BRI would be a use-
ful tool for selecting trauma patients who could potentially ben-
efit from early prehospital transfusion intervention. In both
military and civilian trauma patients, after early “en route” trans-
fusion of plasma and pRBC administration, patient outcomes,
Figure 2. BRI score cutoffs and their corresponding sensitivity (blue)
the sensitivity (TPR) is 0.83, and the specificity (TNR) is 0.85. Right: for
specificity (TNR) is 0.85.

© 2021 American Association for the Surgery of Trauma.
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and survival have been shown to benefit with less overall use
of pRBC, platelets, and fresh frozen plasma,19–22 and lower
30-day mortality rate.23,24 The ability to automatically process
early evidence of trauma patient instability with routinely col-
lected vital signs can assist clinicians in the rapid diagnosis of
bleeding, triage, and bleeding control intervention following in-
jury. The BRI score calculation may be helpful in austere envi-
ronments, prolonged field care with limited resources and
where medical expertise may not be immediately available, or
where there are limited evacuation transport resources. Given
and specificity (orange). Left: for CAT, using BRI = 0.25 as cutoff,
MT, using BRI = 0.28 as cutoff, the sensitivity (TPR) is 0.87, and the
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the average 35 minutes prehospital time for our patients, vital
signs data collection could be processed in real time to auto-
matically trigger a warning to the trauma receiving team and
the blood bank of the impending need to initiate protocols for
MTand CAT, including availability of blood products and oper-
ating room standby, until trauma center assessment. At STC,
uncrossmatched blood and plasma are available in the trauma
bays. These blood products are checked regularly by the blood
bank and replenished as needed. The STC adult MT protocol
is six units of pRBC, six units thawedABO plasma, and one unit
apheresis platelets. These products are used for a 1:1:1 hemo-
static resuscitation. In austere environments during prolonged
field care, when resources are limited and evacuation may not
be available for days, rapid and early diagnosis of bleeding fol-
lowing injury is needed to preserve available blood and other re-
sources. This is especially important for noncompressible “hidden”
compartments of the thorax, abdomen, hard-to-detect pelvic bleed-
ing, and for exsanguinating hemorrhage, where there is only a brief
window of opportunity for therapeutic intervention, to detect
and control acute blood loss.19–21

Limitations of this study include vital signs data in trauma
patients that were collected from a single trauma center, which
may not be applicable to other centers, areas, and circumstances
because of different geographic and patient characteristics. Val-
idation of the BRI by testing using additional new data from
other hospitals and regions is needed. With a short duration of
in-hospital observation, BRI prediction performance could be
improved for short-term outcomes of other interventions besides
blood transfusion.

Another limitation is the potential survival bias from the
definition of outcomes. Patients who potentially may need MT
could die within 24 hours before the transfusion volume reaches
the outcome definition. The CAT transfusion definition has less
such survival bias.25 Total of 92 patients died after 15 minutes in
trauma resuscitation unit. A Kaplan Meier survival curve for
24-hour mortality shows the numbers of patients within the
CAT (1 hour) and MT (24 hours) definition time range (Fig. S4,
http://links.lww.com/TA/B857). Six of the 92 deaths occurred
within 1 hour (3 CAT CAT-positive and 3 CAT CAT-negative).
Eighty-six deaths occurred after 1 hour (29 CAT-positive and 57
CAT-negative). Forty-one died within 24 hours after trauma ad-
mission (9 MT-positive and 32 MT-negative). 51 died after
24 hours (6 MT-positive and 45 MT-negative). For those cases
that died before the outcome definition time range, clinical judg-
ment of their poor prognosis is usually indictive.

Bleeding Risk Index could have important potential as a
platform for field-ready algorithms to be integrated into patient
monitoring systems with no added size or weight. The validated
algorithms also could support the efforts of trauma care and
emergency medical services to forward-deploy instrumentation
capable of automated collection of continuous, high-quality vital
signs data for future generations of clinical decision-support instru-
mentation. If point-of-care testing and other devices are added,23,26

potentially simple software upgrades to existing prehospital mon-
itors could “call” ahead towarn the blood bank, advise the trauma
team and operating team to start preparations for these interven-
tions, activate blood product processing to reduce the coagulopa-
thy of trauma, and coordinate other logistics for trauma patient
reception and resuscitation. The same BRI algorithm has been
272
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shown to be a good predictor of uncrossmatched and emergency
blood transfusion during trauma center reception and resuscita-
tion, and of other lifesaving interventions.9–11 The BRI score
collected in-flight performs better than ABC, SI, and RTS pre-
dictions of MTand CAT. Bleeding Risk Index does not increase
patient evaluation burden, require additional data entry or expert
interpretation.
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