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Abstract Research and practice based on automated elec-
tronic patient monitoring and data collection systems is sig-
nificantly limited by system down time. We asked whether a
triple-redundant Monitor of Monitors System (MoMs) to col-
lect and summarize key information from system-wide data
sources could achieve high fault tolerance, early diagnosis of
system failure, and improve data collection rates. In our Level
I trauma center, patient vital signs(VS) monitors were
networked to collect real time patient physiologic data streams
from 94 bed units in our various resuscitation, operating, and
critical care units. To minimize the impact of server collection
failure, three BedMaster® VS servers were used in parallel to
collect data from all bed units. To locate and diagnose system
failures, we summarized critical information from high
throughput datastreams in real-time in a dashboard viewer
and compared the before and post MoMs phases to evaluate
data collection performance as availability time, active collec-
tion rates, and gap duration, occurrence, and categories.
Single-server collection rates in the 3-month period before
MoMs deployment ranged from 27.8 % to 40.5 % with com-
bined 79.1 % collection rate. Reasons for gaps included col-
lection server failure, software instability, individual bed set-
ting inconsistency, and monitor servicing. In the 6-month post

MoMs deployment period, average collection rates were
99.9 %. A triple redundant patient data collection system with
real-time diagnostic information summarization and represen-
tation improved the reliability of massive clinical data collec-
tion to nearly 100 % in a Level I trauma center. Such data
collection framework may also increase the automation level
of hospital-wise information aggregation for optimal alloca-
tion of health care resources.
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Introduction

Advances in computer hardware and medical sensor technol-
ogy facilitate collection of large quantities of physiologic pa-
tient data in real-time. Data ranging from routine intermittent
observations to high fidelity waveforms can be recorded and
streamed into monitors for care planning, clinical decision
support [1], quality improvement [2], and reduce hospital
mortality [3]. With massive storage capability, those data can
also be stored as part of the electronic health records (EHRs)
for retrospective analyses such as physiological pattern dis-
covering [4, 5] and prediction modeling [6, 7]. The amount
and intimacy of the data potentially available for analysis of-
fers an unprecedented view of physiologic subtlety and vari-
ability in health and disease. One example is the PhysioBank,
a large collection of biomedical databases, which inspires
studies in cardiovascular time series dynamics, modeling in-
tracranial pressure for noninvasive estimation, and more
[8–11]. Moreover, reliably collected data could make near
real-time clinical decision support practical in emergency
healthcare or en route care in combat field [12, 13].
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Amajor limitation to the full exploration of these data is the
inevitable gaps in the continuity of the data that occur with
system downtime. In advanced analysis and predictionmodel-
ing, such gaps create the classic epidemiologic Blost to follow-
up^ problem. Among other concerns, at a practical level,
missing data hinder the application of many statistical analysis
methods available in off-the-shelf software [14]. Increasing
the reliability of the collecting system becomes more impor-
tant in modern advanced care monitoring and data collection
systems. However, in a busy resuscitation or health-caring
environment, collecting more complete data is not the top
priority of health providers. Most modern hospitals data col-
lection systems, even if quite advanced and continuously up-
dated, are an assemblage of various, often decentralized sys-
tems and devices. Monitoring, management, and quality as-
sessment of such systems is beyond individual human capa-
bility, and researchers are beginning to explore ways to do this
[15, 16]. Hence, a reliable system that simplifies and auto-
mates the collecting process is necessary.

In our Level I regional trauma center, 94 GE-Marquette-
Solar-7000/8000® (General Electric, Fairfield, CT) patient
vital signs (VS) monitors are networked to provide collection
of real time patient VS data streams in 13 trauma resuscitation
unit (TRU), 9 operating room (OR), 12 post-anesthesia care
(PACU), and 60 intensive care (ICU) individual bed/monitor
units. Each patient monitor collects real-time 240 Hz wave-
forms and 0.5 Hz trends data which are broadcasted via UDP
(User Datagram Protocol) through secure intranet to a dedi-
cated BedMaster® server (Excel Medical Electronics, Jupiter,
FL) and archived [17]. This process generates approximately
20 million data points/day/bed or roughly 30 terabits/year of
data. Physiologic data collected through this system, when
they are displayed on the GEMarquette monitor, include elec-
trocardiographic (ECG), photoplethysmographic (PPG), car-
bon dioxide (CO2), arterial blood pressure (ABP), and intra-
cranial pressure (ICP), among others. Trends include heart rate
(HR), respiratory rate (RR), temperature, oxygen saturation
(SPO2), end-tidal CO2 (EtCO2), and ICP, among many others.

We asked whether constructing a multiple-redundant
Bmonitor-of-monitors^ (MoMs) collection system capable of
providing ongoing quality assurance assessments would allow
us to increase our collection rates of these various steams. In
this study, we presented an architecture of triple redundant
patient data collection system with real-time diagnostic infor-
mation summarization. We demonstrated its usefulness
through the comparison of collection rates 6 months before
and after the deployment of such system.

Methods

Over a 12-month study period, we assembled and installed the
required server hardware, designed and implemented the

relevant software, recorded pre-implementation and post-
implementation studies of physiologic data collection gaps,
and categorized these gaps by time intervals of relevance for
quality assurance and human factors review. In the first phase,
we assembled the necessary hardware, developed prototype
software, and tracked physiologic data collection success in
the pre-existing, single-server, system. In the second phase,
we tested the prototype MoMs system hardware and software.
In the final phase, we implemented the MoMs system in real-
time for all 94 individual bed/monitor collection points in our
Level I regional trauma center. In both the pre- and post-
MoMs deployment phases, we calculated the percentage of
gap duration, gap occurrence (average numbers of gap event
per bed per month), and identified gap causes.

Triple redundant VS collection system

To minimize the impact of individual server collection failure,
we installed three dedicated BedMaster® servers in parallel to
simultaneously collect physiologic patient data from the net-
work of patient monitors described above. Figure 1 diagrams
the datastreams from multiple individual bed units to three
BedMaster® servers arranged in parallel. This triple modular
redundancy architecture permits fast switch over time and
high system availability [18]. One server is selected as a prin-
ciple or Bbackbone^ server. When it fails, values from a sec-
ond sever will fill in. When two servers fail, values from the
third one will be used.

MoMs dashboard viewer

The triple redundant data collection system could increase
data availability. However, a tool for fast system diagnosis is
still lacking. To address the need for ongoing system status
monitoring and real-time presentation critical clinical data, we
developed the MoMs information representation layer over
the VS collection system. Using the current data collecting
architecture and a minimum-instrument approach, we stream
the most recent record from the BedMaster® server from each
bed to a dedicated data server, the MoMs server (Fig. 1). A
high performance database hosts those data items labeled with
data server name, bed unit, timestamp, admission status.

The front-end (MoMs Viewer) is designed as a web-based
application so that users can access it from any location in the
hospital.1 IP address white-list and user login modules are
used for information security. Each bed collection status is
summarized and pushed to the MoMs viewer through the
Ajax (asynchronous Javascript and XML) techniques every
minute. All 94 participating patient bed units are represented
by individual cells in each of 3 spread-sheet blocks

1 A simplified code framework is hosted at https://github.com/
shimingyoung/MoMs.
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representing one of the three redundant BedMaster® servers.
Figure 2 shows a block of the web-based monitoring system
corresponding to bedside collections from monitors in the
TRU, ORs, and neurotrauma critical care (NTCC), and
multi-trauma critical care (MTCC) units. The background col-
or of each cell represents the associated bed’s data collection
status. Green indicates that the data stream has been alive in
the last 5 min. Yellow indicates that the last timestamp from

data from that bed/monitor is 5 min to 4 h old and that a
problemmay exist. Dark red indicates a timestamp gap greater
than 4 h and that action should be taken to remedy the prob-
lem. Report of an elapsed data collection gap includes the
duration of collection failure. Table 2 summarized common
indications from the MoMs viewer, which can assist quick
system diagnosis, and hence help to reduce data collection
failure time.

Fig. 1 The MoMs system
architecture with triple modular
redundancy design using three
BedMaster servers

Fig. 2 A portion of MoMs viewer for data collection status. Green cells
(shown): collection is active (within last 5 min); yellow (not shown):
collection was active 5 min to 4 h ago; red (shown): no data collection
has occurred in more than 4 h; gray (shown): a bedside collection is

offline. In each cell letter BA^ means admitted; letter BD^
discharged. The pink background cell indicates a patient with an
intracranial monitor in place; ICP value appears in white
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There are different elements in each colored cell to indicate
bed unit occupancy. Often, nurses may press a bedside
button for admission (A) to or discharge (D) from this
bed. This allows for a cross-check on potential causes
for information gaps such as the device being temporar-
ily inoperable or no patient being monitored. In addi-
tion, bed occupancy can be verified by real-time phys-
iological values, such as HR. It can be used as a second
evidence for us to infer if a bed unit is currently occu-
pied by a patient. If one bed unit is offline, the gap
between now time to its last reported time will be
shown. Figure 2 shows one such example in the unit
OR-6, which was highlighted in a red cell with a time gap of
6 h and 51 min.

The easy configuration of the MoMs dashboard viewer
also allows it to be used for identifying and displaying
clinical information of special research interest. For ex-
ample, intracranial pressure (ICP) monitoring is an im-
portant VS for traumatic brain injured patients and is
not often collected due to its invasive nature. To receive
early notification of ICP-monitored cases, the MoMs
viewer can extract ICP data from all bed/monitor units
data streams and display these data using a pre-defined
color code. In Fig. 2, those pink cells with white bold
font text show real-time ICP values from the corre-
sponding bed/monitor units. For example, at the time
we viewed the MoMs system, the unit NTCC-17 was
monitoring ICP with instant value of 8 mmHg.

VS collection gap analyzer

To provide an at-a-glance view of the status of data collection,
we visualized the collection gap patterns for all three data
servers (Fig. 3). These patterns may be associated with indi-
vidual server collection system failure (Pattern A); individual
bed collection failure (Pattern B) and individual patient mon-
itor disconnection from the server (Pattern C). The analyzer
also provides a visual display of how the triple redundant
system can be used to enhance the overall data collection rate.
Data from the three servers can be aligned using the accumu-
lated internal clock drift by using the timestamp and also the
shape of the various waveforms. One of the servers is
established as the Bbackbone^ server. Missing data are filled
in from parallel data from one of the other servers. In Fig. 3,
BTRU 01–04^ indicates individual patient bed/monitor units
located in the TRU. Interruption in the wide blue (BedMaster
1), pink (BedMaster 2) or green (BedMaster 3) bars indicates
that that server is down. The narrow red bars within each
server bar represent HR values being actively collected and
present in the data stream.

Parsing and visualization of the large volume of numeric
data are enabled by highly optimized and parallel operations.
Aggregating data over longer durations (a week) and from

multiple units (13 bed units in the TRU) for all three servers
require processing roughly 16 million data points.2 To present
these data efficiently, we pre-processed historic data collected
by three servers into the Matlab (R2014a, MathWorks,
Boston, MA) default data format for high performance on disk
input/ouput. [19] Using vectorized code, we organized time-
aligned data into matrices and visualize millions of data point
in 2 ~ 3 s for weekly-data diagnosis.

Results

The active study period for this work was February 2013
through January 2014. The testing phase focused on the
TRU, the most active site in our advanced trauma care system.
The final deployment phase incorporated all 94 bed units in
our current system. According to the hospital trauma registry
and ADT (Admission/Discharge/Transfer) records during this
study period, there were total 8719 adult patients stayed in
hospital, with average 3.8 days of hospital stay.

During the 3 month pre-MoMs developmental phase, after
the installation of the three dedicated servers but before their
being linked through the MoMs software as a redundant sys-
tem, collection rates range from each individual dedicated
server were 27.79 % to 40.49 %. After the installation of the
triple-redundant server system but before the installation of
the viewer system, the total physiologic data collection rate
improved to 79.13 % (Table 1). The overall missing collection
rate (gap) was 20.87 %. Most of this was due to collection
gaps of >4 h (18.02 % of potential collection time or 1.62
times/bed/month). Five minute – 4 h collection gaps were
recorded 0.13 % of potential collection time or 0.6 times/
bed/month. Reasons recorded for collection gaps included in-
dividual collection server failure, software instability, individ-
ual bed setting inconsistency, and clinical engineering servic-
ing of patient monitors. During this period, no collection fail-
ure notification system was in place.

In the 6-month post-MoMs deployment period, after the
installation of the collection failure notification system, single
server collection rates ranged from 87.05 % to 95.54 % and
the triple redundant system achieved 99.88 % total collection
rate. Collection gaps were characterized as 5 min – 4 h (yel-
low), 0.01 % or 0.08 times/bed/month; and >4 h (red), 0.11 %
or 0.02 times/bed/month (Fig. 4).

Individual server contributions are also shown in Table 1. In
the pre-MoMs phase, the individual servers had relatively low
alive rates, however, the combined up time was about 80 %. In
the post-MoMs deployment phase, after the activation of the
information summary and early notification viewers, individual
servers’ up time and the combined system up time improved

2 It is estimated by assuming the data are of 2 s resolution. 1800 point/h ×
24 h × 7 days × 13 units × 4 variables =15.7 million data points.
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(combined, 99.88 %). Using server 2 as the principle system,
additional support was required from the additional servers up
to 4.17 % of the total potential collection time.

Discussion

This paper describes the development, testing, and implemen-
tation of a triple-redundant, continuous data collection system
capable of reliably handling multiple streams of incoming
physiologic patient data in a manner that also permits storage
and retrieval for quality assurance and a range of clinical re-
search purposes. For 14 years (2000–2013) prior to initiating
the system described here, we used a single BedMaster® serv-
er as our data acquisition platform and as a critical component
that converted signals from multiple bedside patient monitors
and stored these data digitally. With this single-server system,
continuous data collection rates varied from 50 % to 90 %. In
recent years, as our research group has explored these data in
increasingly sophisticated ways [4–7, 20, 21], we have be-
come increasingly concerned about the effects of lost data
on the sufficiency and unbiasness of study case sampling.
The aims of the project described here were to improve overall
collection rates, identify causes of data loss, and establish an
early warning system that would significantly decrease the
lengths and occurrences of gaps in data collection. We believe
that the data shown here demonstrate that a triple redundant

system is both workable and necessary to fully accomplish our
stated aims.

Only the triple-redundant system cannot solve all the issues
in a complex and unstable data collection environment, as we
can observe from the three servers’ performance during the
Pre-MoMs months. With the MoMs system, the triple-
redundant system could bemore robust to system failures with
near 100 % collection rate (Table 1). Although a single
Bbackbone^ server does most of the collection in a system of
the size and complexity of ours and the two additional servers
contribute relatively little overall in-fill data, we were interest-
ed to see the improvement in total collection achieved by all
three servers when they were participating in the post-MoMs
system, compared to their relatively tepid performance when
isolated. This improved performance was demonstrable for
both Bup^ time, time available for collection, and actual data
collection. Using the early notification enabled by the MoMs,
data collections are mainly from the principle server, which
decreases the overhead associated with switching between
servers, but the triple modular redundant design minimized
both down time and lost collection time.

We identified a number of reasons for sub-optimal perfor-
mance by unitary server systems. The most common reason
for short gaps in data collection appeared to be the delays
inherent in restarting and re-configuring the BedMaster®
server after a system upgrade or reboot. The BedMaster®
software requires a substantial amount of time to configure

Table 1 Monthly average percentage collection time for each
individual server during the developmental phase (Pre-MoMs), and
during the deployment phase, (post-MoMs, individual and triple

redundant systems), including the average contribution from the
auxiliary servers (server 1 and 3) to the primary server (BM2)

Server 1 collected Server 2 collected Server 3 collected Server 3 contributed Server 1 contributed Combined

Pre-MoMs 40.5 % 27.8 % 36.3 % 25.4 % 26.0 % 79.1 %

Post-MoMs 95.4 % 95.5 % 87.1 % 4.2 % 0.2 % 99.9 %

Fig. 3 Three patterns of component failure visualized by the BCollection
Gap Analyzer^ for data gathered in the triple modular redundancy
system. Pattern A: server 3 was offline while the other two were alive;

Pattern B: all servers are alive but one bed unit (TRU03) was
disconnected from one of the servers (server 1, blue); Pattern C: one
bed unit (TRU02) was disconnected from all three servers
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each bed for collection. Generally, setting up a single bed
takes five steps that take about 10–20 s for an operator familiar
with the software [17]. Restarting our entire 94-bed system
may up to 30 min, during which time we are unable to capture
complete data from all beds.

Data collection may also fail from the bedside. Although we
use the BedMaster client software to acquire the latest status of
data collection for each bed/monitor unit, this system is insuffi-
ciently powerful to formulate an overall picture for all deployed
devices nor to aggregate diagnostic information usefully for
diagnosis. Beside data collection failure was the second most
common source of collection gaps and a frequent cause of ex-
tended delays in identification of and response to down time.
Additional sources of beside collection failures fell into four
general categories: hardware failure, human operator issues, rou-
tine servicing of monitors (which includes the need for user
reactivation for collection to be resumed) and network failure
(servers, bedside devices, and networks are variously located
through the trauma center floors and structures). Being able to
pinpoint the likely source of collection failure was a particularly
gratifying outcome of the work described here.

During the pre-MoMs deployment time, we adopted week-
ly manual checking to keep the data collection system alive.
However, due to the intermittent nature of those component
failures, the missing collection gaps still ranged from hours to
up to a week days. Configuration of a scalable, user-friendly,

real-time dashboard and early warning system for physiologic
data collection status contributed directly to the dramatic de-
crease in gap times and has potential for implementation
across the hospital enterprise. Ideally, such systems should
report component failure in real-time, provide simple informa-
tion for diagnosis, and present the pattern of the missing col-
lection, e.g. independent bedside device failure, or batch data
server failure, or software failure from the BedMaster server.

An additional potential use for the MoMs viewer is track-
ing physiologic data from rare events such as that from ICP
monitoring systems. An example currently underway in our
system is the at-a-glance capability of identifying bed systems
that include patients undergoing ICP monitoring so that clini-
cians involved in a currently ongoing study are alerted to
routine needs for blood sampling in these patients.
Previously, researchers could have accessed this information
only by clicking through each bed tab in BedMaster Client
and selecting ICP for viewing, a process that took a not-
inconsiderable period of time. With the MoMs, we can enable
novel monitoring variables as required and display them in
each cell, which increases the awareness of important clinical
events and saves manual resources.

The MoMs viewer runs with reasonable robustness and
low cost. The server has been deployed on a regular desktop
PC with 16 GB memory and Intel® core i5 1.90 GHz. During
its stress test with ten simultaneous data output requests and
three data servers input, The viewer related service programs
consumed less than 1 % CPU and memory resources in aver-
age, reported by the system task manager program. This
means the MoMs could be deployed on other less expensive
computing devices, such as Raspberry Pi under $50.

The MoMs system is highly scalable because of its highly
parameterized configuration. The key variables, such as bed
units names, locations and numbers, are stored in JSON
(Javascript Object Notation) arrays. Visual diagnostic styles
are defined in standard CSS (Cascading Style Sheets) files.
Clearly separated execution code, parameter configuration
and style definition allow users to flexibly add new units or
changing the viewer’s looking. Interested readers could find
example config files from our Github repository. However,
the MoMs system scalability may be limited by its current

Table 2 Possible system failure
reasons and indications from the
MoMs viewer

Failure type MoMs indicator

BedMaster software 1. Individual bed unit configuration error Random cells in yellow/red

2. BedMaster database error A block of cells in yellow / red; BedMaster
server is online

3. BedMaster service down A block of cells in yellow/red; BedMaster
service stopped

BedMaster
hardware

1. BedMaster server down A block of cells in yellow/red; BedMaster
server is offline

Network 1. BedMaster server connection failure Random cells in yellow/red

2.72%

0.00%0.13% 0.01%

0.94%

0.01% 0.10%
0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

Pre-MoMs (3 months) Post-MoMs (6 months)

gap <= 5 min 5 min < gap <= 4 hrs 4 hrs < gap <= 24 hrs gap > 24 hrs

17.08%

Fig. 4 Pre-MOMs (Feb2013-Apr2013) and post-MOMs (Aug2013-
Jan. 2014) BM123 joint collection gaps of different duration categories
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visualization style. We hope all bed units information could be
displayed within one screen without scrolling for convenient at-
a-glance view. Using an equal sized cell (Fig. 2) to represent
each bed unit determines that the screen size limit will be
reached when the total number of monitored beds grows. The
R Adams Cowley Shock Trauma Center has about 113 beds,
which can be fully displayed on a regular monitor or tablet
screen. The University of Maryland Medical Center has about
757 beds, and the Johns Hopkins hospital has about 1000 beds.
It requires more creative visualization techniques to present 10
times more information on one screen. One possible solution is
that only bed units with abnormal data collection status will be
displayed at different sizes, based on their urgent levels.

Conclusion

Design and implementation of a triple-redundant patientmonitor
data collection system with at-a-glance real-time display im-
proved the reliability of high fidelity physiologic data collection
from 80% to essentially 100%. Supported by an efficient back-
end data-streaming processing routine and a highly configurable
information displaying system, we were able to extract key in-
formation from massive data sources and provide instant iden-
tification of data collection status, including identification of
critical component failures. Essentially complete, real-time col-
lection of massive quantities of an array of physiologic data
permits future study design with greatly enhanced confidence
in the validity and reproducibility of our results. In future work,
we intend to enhance the system information notification mod-
ules to transmit system alerts directly to relevant professional
staff for system diagnosis or critical medical information up-
dates. We also plan to apply more data aggregation and visual-
ization techniques to enhance access to longer durations of past
data, so that the trajectory of system performance or timeseries
of important clinical data can be efficiently viewed in real-time.
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