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ABSTRACT
Smartphones and other vehicular sensors equipped with GPS
and wireless networking capabilities, are becoming ubiqui-
tous in transportation systems. They provide us with op-
portunities to gather timely information about road traffic
conditions, fuse (assimilate) it with traffic flow models to
improve upon the accuracy of these models, and hence sup-
ply valuable information for real-time transportation deci-
sion making. Macroscopic traffic flow models are described
by systems of partial differential equations (PDEs), which
are usually only solved numerically. Adaptive moving mesh
methods have shown promise in handling high variability of
the spatio-temporal features (e.g. shocks and discontinu-
ities) in model’s solutions.

We propose a novel low-overhead strategy to adaptively
select observation sites in real time, by relying on informa-
tion from the adaptive moving mesh of the numerical solver
of the underlying PDEs. The idea is to place more of the
limited observational resources to locations of higher vari-
ability in the numerical solution. We incorporate our strat-
egy into a particle-filter based data assimilation framework,
and compare it with the strategy of gathering and assimilat-
ing measurements from evenly spaced observation sites. We
experimentally show that our strategy reduces the relative
error by up to 53% in estimating vehicle density on a road
during phantom jams and traffic jams due to bottlenecks.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and mod-
eling; J.2.m [Computer Applications]: Physical sciences
and engineering
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1. INTRODUCTION
Traffic monitoring applications systematically collect data

about traffic conditions. These data are used for alerting
drivers about congestion and accidents, planning new road
pavements to accommodate predicted traffic loads, and so
on. Many traffic models also have been developed to forecast
the neat future traffic conditions in terms of certain spatio-
temporal features of the system.

Unfortunately, in order to remain tractable, models of
traffic phenomena are only approximations of the correspond-
ing physical phenomena, and often require the setting of
various parameters (whose exact values are dynamic and of-
ten unknown). The accuracy of these models can often be
improved by fusing real observational data into the model.
Data assimilation refers to methods for incorporating real
observational data into the model to estimate values of the
unknown parameters of the model and improve its forecast-
ing accuracy. Assimilation is widely used in many areas,
such as climate forecasting and tracking moving targets.

To collect observations, sensors are deployed in highways
and secondary rural road networks. For example, the Feder-
al and State Departments of Transportation (DOTs) carry
out various programs to collect traffic data by means of in-
ductive loop detectors, video surveillance systems, etc. The
measurement devices are fixed at certain locations, and are
hardly moved during their lifespan. Because of this reason,
mobile observation devices attract more and more attention
nowadays. For example, in modern systems, probe vehi-
cles and camera-equipped helicopters are sent to locations
where the observations are more likely to improve forecasts.
Moreover, similar observations can be generated from social
networks. During their trips, passengers update their infor-
mation on social networks with GPS-equipped smartphones,
which provide their location and possible verbal description
of traffic conditions. This allows us to pull interested obser-
vation from specific locations with much less delay. The Mo-
bile Millennium Project [8] at the University of California,



Berkeley, conducted a series of experiments sending vehicles
with GPS-enabled phones to highways and demonstrated
that even a small penetration (2%∼3%) of cell phones is
sufficient to accurately estimate traffic velocity on the high-
way. Work et. al [18] used ensemble Kalman filter data
assimilation to fuse velocity measurements, collected from
GPS phones on vehicles, with the Cell Transmission Model.

It is valuable to design observation strategies that increase
the accuracy of forecast after doing data assimilation, while
maintaining the cost of gathering the observations at a low
level. Bishop et. al [3] proposed an adaptive observation
sampling strategy for the ensemble transform Kalman filter,
in which the new optimal observation sites are determined
by the filter’s predicted signal variance. Fox [5] studied the
use of an adaptive number of particles for particle filters.
The sampling strategy is to choose larger number of particles
when the state uncertainty is high.

We propose a novel strategy to adaptively select locations
of sensors to collect additional observations, and integrate
it into a data assimilation framework. Our strategy utilizes
information from the numerical solution of the system of
partial differential equations (PDEs) used in modeling the
macroscopic state of the traffic system, which requires very
little additional calculation. In particular, we utilize adap-
tive moving meshes which have finer mesh cells where the
numerical solution of the PDEs exhibits higher variability.
The goal of our strategy is to deploy the limited observation
resources at those locations that can better improve the ac-
curacy of data assimilation, by observing more details where
the solution of the PDEs may exhibit shocks, discontinuities,
and high variability in general. Our strategy brings the ad-
vantages of adaptive moving mesh schemes into traffic data
assimilation. We experimentally compare our strategy with
the approach of assimilating observations from evenly spaced
observation locations. We focus on two frequently occurring
high-impact road phenomena, bottleneck and phantom jam-
s, since during both the vehicle density has high variability
at the wave fronts of the jams. We find that our strategy
reduces the average relative error in estimating the vehicle
density of the road during bottleneck and phantom jams by
up to 53% with respect to the evenly spaced observation
locations.

The rest of the paper is organized as follows. In Section 2
and Section 3, we review macroscopic traffic flow models and
data assimilation methods. In Section 4, we describe adap-
tive moving mesh methods and our strategy of adaptively
placing observation sites. Experimental results on bottle-
neck and phantom jams are presented in Section 5.

2. MODELS FOR TRAFFIC PHENOMENA
Macroscopic traffic flow models approach complex dynam-

ical transportation systems by means of fundamental fluid
dynamics laws, and describe traffic phenomena by certain
spatio-temporal features, such as the vehicle flow rate, ve-
hicle velocity, vehicle density, and road occupancy. These
features can be of highly varying scales caused by phenom-
ena like shock waves and contact discontinuities. Therefore,
we need both models and solution schemes that are capable
of capturing those phenomena.

The Lighthill-Whitham-Richard (LWR) model [7, 9] is a
widely used macroscopic model. For example, the LWR
model was used to study the traffic flow in the heavily con-
gested Lincoln tunnel in New York City [15]. The LWR

model assumes a fundamental relationship that describes the
velocity V (ρ) as a function of the density ρ, and requires the
mass conservation law for vehicles, resulting in the following
hyperbolic partial differential equation (PDE):

∂ρ

∂t
+
∂ρV (ρ)

∂x
= 0. (1)

Unfortunately, studies show that the average velocity V de-
pends not only on the density ρ at a particular location,
but also on the average velocity and acceleration at nearby
locations.

Payne [1] firstly suggested to take traffic acceleration into
account, and extend the LWR model by including Equa-
tion 2. In this equation, P is the traffic pressure, τ is the
drivers’ reaction time, and Ve is the equilibrium velocity.
The equation describes the behavior where drivers attemp-
t to accelerate to match up when their vehicle speeds are
less than the equilibrium speed, and decelerate otherwise.
Kerner [13] proposed concrete forms for P and Ve.

∂V

∂t
+ V

∂V

∂x
=

Ve(ρ)− V
τ

− 1

ρ

∂P

∂x
(2)

Helbing’s model [6] extends the above models by also con-
sidering the dependence between the average velocity V and
the variance of the average velocity Θ, resulting into the fol-
lowing system of hyperbolic PDEs

∂Θ

∂t
+ V

∂Θ

∂x
= −2P

ρ

∂V

∂x
− 1

ρ

∂J

∂x
+

2

τ
(Θe(ρ)−Θ),(3)

where P = (ρΘ− η0∂V/∂x) /(1− ρs(V )) and

J = −κ0(∂Θ/∂x)/(1− ρs(V )). (4)

In the equations above, Θe is the equilibrium variance of
the average speed variance Θ. Eq. ( 2) models the pressure
from the average desired velocity Ve. With such pressure,
drivers adjust their speed toward Ve. Eq. (4) describes the
flux of the velocity variance.

The macroscopic models above are capable of simulating
the formation and evolution of traffic jams. A traffic jam
refers to a condition that a sequence of vehicles accumulates
with small inter-vehicular distances and low moving speed.
Many reasons, such as accidents or road construction, lead
to reduced road capacity and contribute to the formation
of bottlenecks, which result in jams. A phantom jams is a
special kind of jam that happens when slight disturbances in
the road result in a steady growth of vehicle density behind.
For example, when the density reaches a certain level and
an inexperienced driver slows down a little, it results in a
steady growth of density behind. But as this driver speeds
up to match the velocity of vehicles in front, the jam will
disappear quickly.

3. DATA ASSIMILATION FOR TRAFFIC
Data assimilation refers to recursive computational meth-

ods that find initial conditions for a system model that re-
sults in the best short-term forecast of the system state[12].
Assimilation for state-space system models usually consists
of three components: the model operator M that maps the
current system state xt to a future state, the observational
operator H that maps the system state xt to the observa-
tional data yt, and the assimilation algorithm. In this study,
we use the Helbing’s model as the model operator M. The



system state is usually hidden (not directly observable). For
discrete-time systems with additive noise, we have

xt =M(xt−1) + ut, and yt = H(xt) + vt, (5)

where ut and vt are model and observation noise respective-
ly, and are often assumed to be white noise.

For a state-space model, assimilation methods find esti-
mates of the often hidden state xt, given the sequence of
all prior observations y1:t

.
= y1, . . . ,yt. Usually, the hidden

state xt represents variables that are hard to measure direct-
ly, while yt represents variables that are easy to measure.
In traffic problems, the road density is usually modeled as a
hidden sate xt, since it cannot be directly measured. Oth-
er vehicle velocity and number passing a point in the road
are modeled as yt. In Bayesian estimation, the problem
becomes to recursively quantify the (posterior) belief (prob-
ability distribution) in xt given all the prior observations
y1:t. Seminal assimilation methods include Kalman filters,
particle filters and so on; please refer to [12, 16] for more
details.

The system state xt and the model operator are deter-
mined by the discretization of the system of PDEs used to
model the physical system (eg traffic system), while the ob-
servation operator is determined by the available sensors and
the system state. For example, for the case of the LWR traf-
fic model, xt would correspond to the density of cars on the
road at each time step t. The discretization of the PDEs
is due to the fact that generally the system of PDEs does
not have analytical solutions, and hence we must resort to
numerical solutions. The systems of PDEs given in section 2
for modeling traffic flow do not have an analytic solution in
general. Further, note that the numerical errors in solving a
system of PDEs, due to the discretization and the numerical
methods used, will lead into an increase of the modeling er-
rors of the system state. It is imperative that one minimizes
these additional modeling errors.

4. ADAPTIVE OBSERVATIONS
We describe a strategy for selecting at each point in time,

a few observation locations where measurements when as-
similated are expected to provide us with the most power
in resolving the areas of high variation in the state of the
traffic system. Utilizing measurements at a few locations is
beneficial due to computational considerations when gath-
ering and assimilating them, and also due to the costs (both
money and time) of deploying sensors at those locations.
Moreover, we consider adaptive methods since, due to the
highly dynamic nature of traffic, it is unlikely that a static
selection of observation locations would suffice.

4.1 Adaptive Moving Meshes
We are often interested in resolving the behavior of the

solution to PDEs in those regions of their physical domain
where the solution has large variations in a small area of
the physical domain. For example, when solving PDEs that
govern the propagation of a shock wave (e.g. due to a traffic
jam), we are interested in resolving the solution around the
steep front of the wave. Moreover, the PDEs most often lack
analytic solutions, and hence we resort to numerical solution
schemes. Numerical solutions are derived using finite differ-
ence/element solution schemes on a mesh over the physical
domain. Such a mesh needs to be fine at the small areas
of the physical domain where the solution is highly variable

(we call these regions the high detail regions). Compared to
the uniform mesh solution, a more economical and practical
approach is to have more mesh points in the high detail re-
gions of the domain. Furthermore, since the solution to the
PDEs are time-varying, the mesh points would be moving
over time. This gives rise to the approach of using adaptive
moving meshes in finite difference/element schemes for the
numerical solution of such PDEs. Please refer to [10, 11] for
a detailed review of adaptive moving mesh methods.

Adaptive moving mesh methods are highly desired in the
numerical solution schemes for traffic models, since we will
see that some traffic phenomena, such as phantom jams, are
accompanied with high variability in certain regions, while
the locations with free flow are less variable.

An adaptive moving mesh approach typically consists of
three components: a strategy to move the mesh points, a
method to discretize the physical domain, and an approach
to solve the coupled system of physical and mesh equation-
s. The strategy to move the mesh requires finding the new
locations of the mesh points. The new locations are com-
puted with the help of a mesh density function and using
the equidistribution principle. The mesh density function is
a user-defined function that is a proxy for the error density
of the solution on each mesh cell. The equidistribution prin-
ciple states that the integral of the mesh density function
at each mesh cell should be the same for all cells. The idea
is that, when viewing the numerical solution method as a
function interpolation method, the total interpolation error
at each mesh cell is the same for all cells. Methods for solv-
ing the mesh equations are given in [11, 14], while various
mesh density functions are given in [4, 11].

4.2 Adaptive Selection of Observation Sites
Accurate, real-time observations with sufficient temporal-

spatial resolution improve accuracy of traffic condition real-
time forecasts, especially with data assimilation methods.
Traditional observation networks, consisting of point detec-
tors, video surveillance systems, and microwave radars, are
expensive to build, maintain, and hard to adapt to new
transportation infrastructure or dynamic travel demands.
Probe vehicles have advantages in that they are mobile and
easy to be deployed in different locations based on real de-
mands with low cost. However, it is impractical to deploy a
large number of probe vehicles. Also, it takes time to send
probe vehicles to target locations. Therefore, computation-
ally efficient methods for determining accurate ‘hotspots’ for
observation is important for efficient and economical oper-
ation of a fleet of probe vehicles. In addition, smartphones
equipped with GPS have recently attracted lots of inter-
est in collecting real-time traffic conditions. Passengers on
highway send timestamped messages with geo-location tags,
which could provide information on the vehicle speed, den-
sity, travel time, and so on. The expected large number of
smartphone and social network users provides better obser-
vation coverage and flexibility.

Mobile observation platforms, such as probe vehicles and
smartphones, allow us to dynamically deploy observation
sites to select locations that have high impact on correcting
system prediction. Especially useful would be low-latency
observations gathered from social networks. Once a set of
“good” locations is determined, a query can be immediately
executed to gather the most recent data from observation
platforms in the vicinity of these locations.



Because the adaptive moving mesh strategy is desired e-
specially for traffic models with shocks, discontinuities, and
large variations in their solution, the newly calculated mesh
provides us information about the regions of high detail on
the domain. When the observation resources are limited,
it is natural that we place more observation devices at the
places where the numerical solution has difficulty to cap-
ture the details. Hence, the estimation of system state at
those locations can be better corrected with more informa-
tion from the real system.

Current mesh shapes are good for deciding current obser-
vation locations, which is feasible for observing from social
networks. Observations from probe vehicles have higher la-
tency, since it takes some time to send them to the desired
locations. Nevertheless, the strategy of making observations
based on an adaptive moving mesh can still work for these
devices, by simply forwarding the solution (prediction) of
the PDE model to a long enough future time; the new loca-
tions of the mesh points indicate locations in the road where
high details are likely to happen. In this paper, we focus on-
ly on the determination of observation locations, and leave
the problem of scheduling the probe vehicles to future work.

Algorithm 1 describes in detail our strategy of allocating
limited observation points to those mesh cells of the adap-
tive moving mesh of higher detail and interest. Let M , M1,
N , and s be user-specified parameters. Given a fixed num-
ber of available observation points M and a mesh with N
cells, a large proportion M1/M of observation points are al-
located to cells selected from the s cells with the smallest
volume. The remaining observation points are assigned to
cells selected from the remaining N − s cells. There are
many different strategies to select cells from the two groups
of cells. One simple yet effective strategy is to uniformly
sample from each group of cells.

Different preferences can be adopted to choose values for
M1 and s. For example, one extreme case is to assign al-
l available M observation sites to the first M least-volume
cells (i.e. set M1 = s = M). Although this spirit agrees
with the idea of the algorithm, it is better to reserve some
observation locations for the low detail regions of the phys-
ical domain, because both the PDE model and the mesh
(error) density function are only approximations.

Algorithm 1: Adaptively placing observation according
to cell size.
input : mesh J : J1, J2, . . . , JN , possible number of

observations M
output: Observation locations and their observed value

calculate the size of each cell L = (l1, l2, . . . , lN );
sort(L);
Find the first s smallest cells;
Randomly select M1 from the s cells for observation;
From the rest N − s cells, randomly select M2 for
observation, where M = M1 +M2 and M1 > M2;
Query observation values at these M locations. Feed
the sampled observation into a data assimilation
algorithm;

The running-time (overhead) of Algorithm 1 is dominated
by the time to find the s mesh cells out of N with the least
volume, which can be done in O(N) time using standard
order statistics algorithms.In most situations, the mesh size

N is not large (e.g. 100s of cells for a 10km road).

5. EXPERIMENTAL RESULTS
We analyze our proposed strategy of adaptive observation-

s using two experiments with traffic jams due to bottlenecks
and phantom traffic jams.

Both experiments share the same circular road of 10 Km
length with a periodic boundary condition. We use meshes
with N = 100 cells and always start with a uniform mesh.
Each timestep is 1 sec. Vehicles are evenly placed on the
cells, and the initial average velocity in each cell is equal
to 110Km/hr with a small added perturbation to mimic
the diversity of driving speed. We use M = 20 observation
points at each time step. For the data assimilation, we use
a particle filter with 200 particles and a Gaussian proposal
distribution. We also use adaptive moving mesh with the
mesh density function proposed by Beckett and Mackenzie
[2], and the monotone upstream-centered schemes for con-
servation laws (MUSCL) scheme [17] to find numerical so-
lutions to the systems of PDEs.

We use relative errors in the system state to compare our
proposed strategy with the approach of evenly spaced obser-
vation locations. In particular, every 50 seconds, we com-
pute the average relative error in estimating the system state
over the whose domain during the last 50 secs.

5.1 Jams due to bottlenecks
We setup an identical-twin experiment to generate obser-

vations from the true system state, and to test the data as-
similation algorithm by assimilating these observations with
the state of a similar model with different parameters as
the one used to generate the true system state. First, Hel-
bing’s model is used to generate the true system state by
reducing the road capacity from 200veh/Km to 20% of the
initial capacity during the two time periods 200 ≤ t ≤ 240
and 1010 ≤ t ≤ 1040 at the locations 5000m − 5500m and
2000m−7500m respectively. A twin Helbing’s model, which
is the same as the true model above except that it has no
knowledge of the changes of road capacity, attempts to re-
produce the true state by assimilating partial observations
from the true system state.

In setting observation sites, at each time step, we uni-
formly allocate (sample) M1 = 12, 13, 14, 15 observations to
mesh cells among the s = 25 cells of least volume to ob-
serve at each iteration, corresponding to 60%, 65%, 70%
and 75% of the M = 20 available observation points. The
rest M − M1 = 8, 7, 6, 5 observation sites are uniformly
sampled without replacement from the remaining 75 mesh
cells. Figure 2 shows the relative forecasting error with a
uniform mesh (blue curve) and our adaptive observation s-
trategy (red curve). The relative error for the evenly s-
paced observations approach has two obvious peaks during
the periods the bottleneck occurs; the adaptive observation
strategy does not exhibit such a sharp deterioration of fore-
casting ability during the bottleneck occurrences. Further-
more, our proposed method reduces the relative estimation
by 47%∼53% with respect to using the evenly spaced obser-
vations approach.

5.2 Phantom jams
On highways, phantom jam is a commonly observed phe-

nomenon, even when there is no shutdown of lanes nor other
change of road capacity. When traffic is of high density but



(a) Density

(b) Velocity

Figure 1: True density and velocity of a bottleneck
jam simulated using Helbing’s model.
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Figure 2: Relative estimating error for the evenly
spaced observations approach and the adaptive ob-
servations approach for different proportions M1/M
of observations allocated to the s least volume cells.

still in free flow, sudden self-sustaining traffic jams may form
after small disturbances, such as when an unskillful driver
slows down. We can observe a sequence of reduced speed ar-
eas propagate backward along the road, as Figure 3(a) and
3(b) illustrate.

In this experiment, the true system state was generated
with Kerner’s model. A shockwave can be observed during
the period 3000-4800 secs. We use Helbing’s model to repro-
duce the true system state by assimilating M observations
from the true system state at various locations. Two meth-
ods are used to decide on the observation locations at each

time step: the evenly spaced observations approach and our
adaptive observations strategy

The proposed adaptive observation strategy reduces the
relative error by 29.7%∼45.8% (for M1/M ranging between
60% − 74%) on average with respect to the evenly space
observations approach.

(a) Density

(b) Velocity

Figure 3: Density and velocity of true system state
of a simulated phantom jam using Kerner’s model.
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Figure 4: Relative estimation error for the phantom
jam experiment for the evenly spaced observations
approach and the adaptive observations strategy for
different proportions M1/M of observations allocated
to the s least volume cells.

6. SUMMARY



Mathematical models sketch traffic phenomena on road
networks, such as traffic jams, shock waves. When provided
with the most recent traffic condition as their initial condi-
tions, those models allow us to forecast trajectories of possi-
ble future traffic conditions, and hence support transporta-
tion management decisions. With data assimilation, fore-
casting can be improved by fusing real observations with
the model predictions. Smartphones and social network-
s can supply a huge amount of flexible and rich informa-
tion on traffic condition through timestamped messages with
geo-location tags, which well compensate the shortcoming
of fixed observation networks like loop detectors and video
surveillance systems currently deployed. Because of the mo-
bility and ubiquity of smartphones, it is possible for us to
pull a small amount of observations from regions of high
variability.

We proposed a strategy to place observations at select lo-
cations computed using adaptive moving mesh scheme for
numerically solving the underlying system of PDEs. We
place a large proportion of observation sites to the most
fine mesh cells of an adaptive moving mesh of the physical
domain of the PDEs, which are expected to be the most ben-
eficial for the numerical solution of the PDEs. By observing
more at places where numerical solutions are of sharp vari-
ations, data assimilation methods have the opportunity to
improve estimation at those locations, and hence achieve
higher forecasting accuracy. We experimentally show, using
simulated traffic bottleneck jams and phantom jams that
our proposed adaptive observations strategy improves up-
on traffic estimation accuracy by up to 53% with respect to
evenly space observation locations.

Our strategy brings the advantages of adaptive moving
mesh numerical solution schemes into the data assimilation
framework, providing an effective adaptive dynamic observa-
tion site placement. Our strategy utilizes information from
the numerical solution schemes of the underlying system of
PDEs in the model, with marginal running time overhead,
while offering substantially higher estimation accuracy.
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