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BACKGROUND: Secondary insults such as hypotension, hypoxia, cerebral hypoperfusion, and intracranial hypertension are associated with
poor outcome following severe traumatic brain injury (TBI). Preventing and minimizing the effect of secondary insults are
essential in the management of severe TBI. At present, clinicians have no way to predict the development of these events,
limiting their ability to plan appropriate timing of interventions. We hypothesized that processing continuous vital signs (VS)
data using machine learning methods could predict the development of future intracranial hypertension.

METHODS: Continuous VS including intracranial pressure (ICP), heart rate, systolic blood pressure, and mean arterial pressure data were
collected from adult patients admitted to a single Level I trauma center requiring an ICP monitor. We tested the ability of
Nearest Neighbor Regression (NNR) to predict changes in ICP by algorithmically learning from the patients’ past physiology.

RESULTS: Continuous VS were collected on 132 adult patients over a minimum of 3 hours per patient (5,466 hours total; 65,600 data
points). Bland-Altman plots show that NNR provides good agreement in predicting actual ICP with a bias of 0.02 (T2 SD =
4 mm Hg) for the subsequent 5 minutes and j0.02 (T2 SD = 10 mm Hg) for the subsequent 2 hours.

CONCLUSION: We have demonstrated that with the use of physiologic data, it is possible to predict with reasonable accuracy future ICP levels
following severe TBI. NNR predicts ICP changes in clinically useful time frames. This ability to predict events may allow
clinicians to make better decisions about the timing of necessary interventions, and this method could support the future
development of minimally invasive ICP monitoring systems, which may lead to better overall clinical outcomes after severe
TBI. (J Trauma Acute Care Surg. 2015;79: 85Y90. Copyright * 2015 Wolters Kluwer Health, Inc. All rights reserved.)

LEVEL OF EVIDENCE: Prognostic study, level III.
KEY WORDS: TBI; prediction; ICP.

Traumatic brain injury (TBI) is the most common cause of
trauma-related deaths in the United States.1 For patients

with severe TBI, maintaining normal intracranial pressure
(ICP) is of paramount importance. Even brief periods of ele-
vated ICP are associated with adverse outcomes, and marked
elevation of ICP or elevation unresponsive to medical or sur-
gical management may lead to herniation and death.2 Intra-
cranial hypertension (ICH) is usually detected by nursing staff,
and physicians then make treatment decisions often after the
patient has had a period of elevated ICP. Despite vast ad-
vancements in the management of patients with TBI, clinical
care remains generally reactive in nature. An algorithm that
predicts the development of elevated ICP would provide cli-
nicians with a means to potentially preemptively intervene and
mitigate the negative effects of ICH. ICP management is a

central focus of neurotrauma critical care3Y5; thus, investigation
has focused on the development of early-warning decision-
assist systems both to predict and to provide early treatment
of ICH.

Previous work has shown great progress but has also
demonstrated several challenges in forecasting future fluctua-
tions in ICP.6Y8 Analysis of continuous ICP wave forms may
provide clues to the physiologic state of the patient and provide
a mosaic framework for predicting future ICP. This led us to ask
whether previous patterns in both ICP and peripheral contin-
uous vital signs (VS) could predict future ICP values. We then
hypothesized that processing continuously collected data
would allow us to predict future values of ICP, direct care, and
plan for future interventions.

PATIENTS AND METHODS

This retrospective study was performed at the R Adams
Cowley Shock Trauma Center in Baltimore, Maryland, after
approval by the University of Maryland School of Medicine
Human Research Protections Office. Study subjects included
all adult patients admitted with severe TBI (postresuscitation
Glasgow Coma Scale [GCS] score G 9) who had an intra-
parenchymal continuous ICP monitor. p data collection for
this project was initiated when an ICP monitoring device was
placed either in the trauma resuscitation unit or in the intensive
care unit between 2008 and 2010. Continuous, high-resolution,
automated electronic VS data, including heart rate (HR),
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systolic blood pressure (SBP), shock index (SI), mean arterial
pressure (MAP), pulse pressure (PP), and ICP, were collected
from study subjects every 6 seconds during the course of hos-
pitalization. The Camino intraparenchymal monitor (Integra
LifeSciences Corp., Plainsboro, NJ) directly measures ICP in
the brain parenchyma or the subarachnoid space after surgical
implantation and provides continuous pressure measurements.9

The 6-second high-resolution electronic monitoring data con-
tain noise, outliers, and missing values. Using a 5-minute-long
moving window, we smoothed the continuous VS wave form
by averaging the values inside the window, thereby reducing
the impact of noise and outliers.

The exact mechanism by which systemic VS effect ICP
is not fully understood; however, it is reasonable to assume
that human cerebral hemodynamics have common underlying
mechanisms as several mathematical models have been pro-
posed, which approximate such mechanisms.10Y14 We also as-
sumed that ICP values are outputs of functions of these VS and
that human cerebral hemodynamics have common underlying
mechanisms between individuals, with individual variation. This
assumption implies that two patients with similar responses to
external stimuli and internal regulation should have similar
trends of physiologic status after treatment.

Nearest Neighbor Regression (NNR) provides a method
by which a patient can be compared with a historical data set
based on similarities in physiologic VS to make predictions
on future values given the known path of the historical data
set. When matching patients with similar physiologic status,
two important challenges emerge: (1) definition of a system
state space and (2) definition of a distance metric to determine
nearest neighbors of historical observation to the current con-
ditions. After matching a set of nearest neighbors using simi-
larities in short trends in HR, SBP, MAP, ICP, SI, and PP values,
we selected a forecast generation method that captured the
system characteristics for prediction of a short future horizon
through ‘‘borrowing’’ training ICP values from a historical data
set by means of similarity (Fig. 1).

VS are not completely independent of their previous
values and may be correlated to their past values over short
durations. Such ‘‘memory’’ of past ICP fluctuations can help
to predict future values. We used autocorrelation and cross-
correlation tools to measure the linear predictability of a time
point, that is, if a sequence of observation is simply generated
from a random process and if a linear model is sufficient to es-
timate and predict the variable being observed.15

System state similarity is measured by Euclidean dis-
tance between two system states. In this study, we selected HR,

SBP, SI, MAP, PP, and ICP in the current and past 5, 10, 15,
and 20 minutes. For a new patient with the previously men-
tioned VS measured in the past 20 minutes, we searched for
other patients with similar VS characteristics to gather suffi-
cient training points by measuring the distances between the
new state and all other states. The top k nearest states (neighbors)
and their next 5-minute to 2-hour ICPs were used as a training
set to build regression models for different prediction horizons.

After finding similar system states and their correspond-
ing future ICP records, we used regression methods to build
prediction models. Because of our limited knowledge of the
physiologic mechanisms by which past VS correlate with and/or
influence ICP, we adopted the Gaussian process regression
method to estimate the function values at each variable. This
approach relaxes the parameter space into an infinite space.
However, other regression methods can also fit into this frame-
work, such as generalized linear regression, and so on. For
comparison, we also applied the regression tree and simple
shifting estimation method, adjusting for age, sex, and GCS
score as extra features.16

RESULTS

We identified 132 adult patients with severe TBI during
the course of this study for whom continuous, automated VS
data were available. Mean (SD) age for the study group was
40.2 (18.09) years. Patients were predominantly male (104 of
132) and, overwhelmingly, had severe TBI caused by blunt
force trauma (96.97%). While 64 patients (48.5%) had isolated
head injuries, others often had significant injuries to the chest
and abdomen. Full demographics are listed in Table 1. Con-
tinuously collected VS including ICP, HR, SBP, SI, MAP, and
PP were available at 5-minute temporal resolution for more
than 3 hours. This pool provided 65,600 data points, the
equivalent of 5,466 hours and 40 minutes of VS monitor-
ing. The prediction horizon ranged from 5 minutes to 2 hours.
In training the NNR models, only past and present VS and
ICP measurements were used. The predicted ICP values then
were compared against the measured ICP value for evalua-
tion (Fig. 2).

Bland-Altman plots show that NNR provides good agree-
ment in predicting actual ICP with a bias of 0.02 (T1.96 SD =
4mmHg) for the subsequent 5 minutes andj0.02 (T1.96 SD =
10 mm Hg) for the subsequent 2 hours. These plots (Fig. 3)
illustrate the agreement between measured and predicted ICP
at 5-minute, 1-hour, and 2-hour prediction horizons in the
Gaussian process regression. Figure 4 compares the 1.96 SD

Figure 1. Illustration of searching nearest neighbors given the current system state of a new patient.
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and mean of predicted values against the measurement from
the Bland-Altman plots of the NNR (red curves) in comparison
with two other commonly used statistical methods, the regres-
sion tree (blue curves) and simple shifting estimation method
(green curves). NNR consistently outperformed these alterna-
tive methods in predicting future ICP.

DISCUSSION

Despite significant advancements in the specialized care
of neurotrauma, TBI is still the most important cause of death
and prolonged disability worldwide.17,18 Primary injury to the
brain occurs at the time of impact. Thus, for those who survive,

care centers on prevention of secondary injuries by normalizing
ICP to avoid the deleterious effects of ICH.19,20 High-quality
continuous electronic data garnered by modern physiologic
monitoring systems have the potential to provide an unprece-
dented insight into the dynamic physiologic response to brain
injury, illness, and intervention. In this study, we have shown
that the nearest neighbor method provides reasonably accu-
rate and clinically potentially useful predictions of future ICP
values. The method is sufficiently flexible to incorporate newly
incoming information into the calculation, such as a new VS
that can better approximate the physiologic similarity. Given a
short duration (20 minutes) of ICP measurement to calibrate
the algorithm, it can be used to build patient-specific models
that are adaptive to new physiologic changes as they occur.

Although our work shows promise in accurately pre-
dicting future ICP fluctuations based on past data, some ICP
elevations remain elusive. Patients cough, have recurrent intra-
cranial events, or experience random ICP disturbances that alter
ICP trajectory and are difficult to predict. However, the likely
effects on ICPof known stimulating events such as suctioning or
patient positioning can be estimated if we understand how a
patient has responded previously. Reactions to stimuli differ
between patients, and in the event that the exact stimuli are
known, the responsiveness to those stimuli or interventions can
be learned and predicted through NNR. As more is known
concerning the natural course and seemingly randomfluctuations
of ICP following TBI, we may realize the ability to predict these
events as well.

While our results showed the utility of NNR, several
important limitations exist. This work is a single-center study
on a relatively small sample size, and thus, generalizing our

Figure 2. Illustration of using the NNR method on one patient to dynamically build regression models by ‘‘borrowing’’ data
(especially the ICP) from other patients. A 2-hour prediction window on the top-right corner displays a trend for ICP, under the
assumption that this patient will receive standard treatment.

TABLE 1. Patient Demographics

n 132

Age, mean (SD), y 40.20 (18.09)

Sex Male, 104; female 28

Mortality 18 (13.63%)

Injury Severity Score (ISS) 29 (25Y38.75)

Postresuscitation GCS score 6 (4Y9)

Marshall Score 2 (2Y3)

Head Abbreviated Injury Scale (AIS) sore 4 (4Y5)

Isolated head injury 64 (48.5%)

Chest AIS score 9 2 61 (46.2%)

Abdomen AIS score 9 2 14 (10.6)

Mechanism of injury

Blunt 128 (96.97%)

Penetrating 4 (3.03%)
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Figure 3. Performance of comparison of prediction for different prediction horizons (5 minutes, 1 hours, and 2 hours) of the
NNR using past ICP.

J Trauma Acute Care Surg
Volume 79, Number 1Bonds et al.

88 * 2015 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.



results to the population at large will require further study at
multiple centers using larger, more diverse populations. Al-
though this ICP monitoring framework is very flexible for
estimation (current) or prediction (future), it depends on a
historic data set, and the quality of data in that data set has
significant impact on the estimation accuracy. In addition,
finding a similar system state between a new patient and the
data set relies on the selection of a set of relevant noninvasive
VS. To improve accuracy, additional work is needed to opti-
mize the combination of VS used in this model.

In addition, further work should focus on building a
database on the effects of stimuli, systemic injuries, and in-
terventions on ICP levels in patients with TBI. Systemic in-
juries and clinical interventions often have significant impact
on VS or ICP trajectory. Our methodology does not yet in-
corporate the effect of interventions on predictions of future
events. In some recently published work on the effect of medi-
cal interventions on ICP, we identified a set of drugs commonly
used in ICP management, which have statistically significant
effects in changing ICP for up to 4 hours after administration.21

If our estimation model can incorporate drug treatment given a
few hours previously, estimation of current ICP could be ad-
justed accordingly. In the near future, noninvasive measure-
ment of ICP may replace current methods of measuring ICP.22

Future work may incorporate these modalities to test the pre-
dictive value of noninvasive ICP measures on future ICP. We
will also expand our work to focus on more clinically relevant
intervals, such as ICP levels higher than 20 mm Hg or values
with high instability.

Valid predictive algorithms have the potential to revo-
lutionize the care of patients with TBI, not only to rapidly
identify the necessity of interventions to preempt periods of
looming ICH but also to identify patients who are recovering
well and may not need further escalation of care. It would allow
consulting teams to choose the proper timing of events known
to raise ICP such as peripheral surgical procedures. In the

military setting, it would give physicians, who often are tasked
with operating in austere environments with finite resources,
a useful triage tool and allow for more informed decisions on
when a patient may best withstand the physiologic stressors
of aeronautical evacuation to higher-level care facilities.

Our work shows that the statistical technique of NNR
can be used to make potentially clinically useful estimates of
future ICP values following severe TBI. The results obtained
through the use of this machine learning technique add to the
body of evidence that ICP provides an important metric for
avoidance of secondary brain injury and may offer a physio-
logic pattern to forecast the course of the disease. This repre-
sents an incremental step toward the eventual validation of
predictive models for use in decision-assist algorithms. Our re-
sults also show the utility of incorporating continuous VS data
analysis into ICP prediction. While previous work has shown
the ability to predict future episodes of ICH generally,6Y8 we
now show that NNR can predict future ranges of ICP in clini-
cally relevant time frames. This advanced notice has the po-
tential with further refinement to impact virtually all aspects
of neurointensive care by providing a means to proactively
direct the need for escalation or deescalation of therapeutic
interventions and possibly avoid the deleterious effects of
ICH altogether.
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EDITORIAL CRITIQUE
Dr. Bonds and colleagues from the R Adams Cowley

Shock Trauma Center in Baltimore have attempted to forecast

values of intracranial pressure (ICP) based on prior patterns in
both ICP and continuous peripheral vital signs, with the ultimate
goal of minimizing the effect of secondary insults to the brain
after injury. To do this, they have used a k-nearest neighbor re-
gression model in which several parameters, including heart
rate, systolic blood pressure, shock index,mean arterial pressure,
and pulse pressure are used to predict changes in ICP. This group
found excellent agreement between actual ICP values and a
predictive model using the regression analysis described in
this study. I have some concern that of the five covariates
chosen, only three were independent of each other. The resulting
multicollinearity of these predictor variables may lead to erratic
changes in the estimate of the ICP parameter with only small
changes in the data entered into the model.

Modern physiologic monitoring systems such as those
employed for the purposes of this study have the potential to
generate a large volume of continuous electronic data. In the
future, we should expect that such data sets will become more
commonly available. Analyses of these data sets will have
important potential clinical applications, such as described in
this study. Decisions regarding the continuation of sedating
medications and of the need for ICP monitoring may poten-
tially be made based on the understanding of the correlation
between continuous vital signs and ICP. The recognition of
such relationships promises to be extremely useful in clinical
practice. I look forward to continued research on this topic and
the further use of large data sets to generate predictive models
in trauma care in a general sense.

John J. Como, MD, MPH
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